影响因素
影响线程数设定的因素,主要有CPU核心数、以及应用类型。
CPU密集型应用
CPU密集型应用主要是指需要大量计算资源的应用,常见类型包括:
- 科学计算:气象模拟、流体动力学模拟。
- 图形渲染:3D动画制作、电影特效渲染。
- 密码学运算:区块链挖矿、数据加密。
- 机器学习和人工智能:神经网络训练、深度学习。
- 金融分析:量化分析、高频交易。
- 图像和视频处理:视频编辑、编码解码。
- 编译器和代码分析:代码编译、大型软件项目编译。
- 物理模拟:碰撞检测、物理引擎计算。
- 数学计算:大数计算、符号计算。
这些应用依赖于强大的计算能力,多使用多线程和并行计算技术来提升性能。
IO密集型应用
IO密集型应用主要是指那些受限于输入/输出(I/O)操作速度的应用。常见的类型包括:
- 数据库服务器:如MySQL、PostgreSQL。
- 文件服务器:如NFS、Samba。
- Web服务器:如Apache、Nginx。
- 媒体流服务:如Netflix、YouTube。
- 备份和恢复系统:如Acronis、Veeam。
- 大数据处理和分析:如Hadoop、Spark。
- 文件传输服务:如FTP服务器。
- 日志记录和监控系统:如ELK Stack、Prometheus。
- 分布式存储系统:如HDFS、Ceph、Amazon S3。
这些应用的性能主要受限于频繁的磁盘和网络读写操作,优化时需关注缓存、异步I/O等技术。
如何设定线程数
简单一点的话,可以根据应用类型来套用以下公式(但是,实际应用起来,也不要死守着公式不放,公式只是可以当作参考):
- 如果是CPU密集型应用,则线程池线程数量大小设置为N+1 (N为CPU总核数 )
- 如果是IO密集型应用,则线程池线程数量大小设置为2N+1 (N为CPU总核数)
但是,这两个公式不能无脑套用!
正确的设定方法为:没有固定答案,在项目刚上线的时候,先根据公式大致的设置一个预期数值,然后再根据你自己的实际业务情况,以及不断的压测结果,再不断调整,最终达到一个相对合理的值。
在说明压测的时候,要说清楚可接受的响应耗时是多少,大于这个阈值即是错误,错误率多少可接受。这样给出的线程池参数才合理。
为什么IO密集型应用的线程数量设置为2N+1?
在 IO 密集型应用中,线程多数时间等待 IO 操作而非消耗 CPU,因此增加线程数量能提高并发效率。经验公式 `2N+1` 中,`N` 是 CPU 核心数,2N 的线程数确保在 IO 等待时仍有线程执行计算,`+1` 确保至少一个线程始终工作。这样能充分利用 CPU 资源,避免因 IO 阻塞导致 CPU 闲置。
为什么cpu密集型应用的线程数设置为N+1?
在 CPU 密集型应用中,线程数通常设置为 `N+1`(`N` 为 CPU 核心数),这样能充分利用每个核心,并提供一个额外线程应对短暂阻塞,确保 CPU 不因偶然停顿而闲置。
真实程序中的线程数
那么在实际的程序中,或者说一些Java的业务系统中,线程数(线程池大小)规划多少合适呢?
先说结论:没有固定答案,先设定预期,比如我期望的CPU利用率在多少,负载在多少,GC频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数
比如一个普通的,SpringBoot 为基础的业务系统,默认Tomcat容器+HikariCP连接池+G1回收器,如果此时项目中也需要一个业务场景的多线程(或者线程池)来异步/并行执行业务流程。
此时我按照上面的公式来规划线程数的话,误差一定会很大。因为此时这台主机上,已经有很多运行中的线程了,Tomcat有自己的线程池,HikariCP也有自己的后台线程,JVM也有一些编译的线程,连G1都有自己的后台线程。这些线程也是运行在当前进程、当前主机上的,也会占用CPU的资源。
所以受环境干扰下,单靠公式很难准确的规划线程数,一定要通过测试来验证。
流程一般是这样:
- 分析当前主机上,有没有其他进程干扰
- 分析当前JVM进程上,有没有其他运行中或可能运行的线程
- 设定目标
- 目标CPU利用率 - 我最高能容忍我的CPU飙到多少?
- 目标GC频率/暂停时间 - 多线程执行后,GC频率会增高,最大能容忍到什么频率,每次暂停时间多少?
- 执行效率 - 比如批处理时,我单位时间内要开多少线程才能及时处理完毕
- ……
- 梳理链路关键点,是否有卡脖子的点,因为如果线程数过多,链路上某些节点资源有限可能会导致大量的线程在等待资源(比如三方接口限流,连接池数量有限,中间件压力过大无法支撑等)
- 不断的增加/减少线程数来测试,按最高的要求去测试,最终获得一个“满足要求”的线程数**
而且而且而且!不同场景下的线程数理念也有所不同:
- Tomcat中的maxThreads,在Blocking I/O和No-Blocking I/O下就不一样
- Dubbo 默认还是单连接呢,也有I/O线程(池)和业务线程(池)的区分,I/O线程一般不是瓶颈,所以不必太多,但业务线程很容易称为瓶颈
- Redis 6.0以后也是多线程了,不过它只是I/O 多线程,“业务”处理还是单线程
所以,不要纠结设置多少线程了。没有标准答案,一定要结合场景,带着目标,通过测试去找到一个最合适的线程数。
可能还有同学可能会有疑问:“我们系统也没啥压力,不需要那么合适的线程数,只是一个简单的异步场景,不影响系统其他功能就可以”
很正常,很多的内部业务系统,并不需要啥性能,稳定好用符合需求就可以了。那么我的推荐的线程数是:CPU核心数