题目背景
战争已经进入到紧要时间。你是运输小队长,正在率领运输部队向前线运送物资。运输任务像做题一样的无聊。你希望找些刺激,于是命令你的士兵们到前方的一座独木桥上欣赏风景,而你留在桥下欣赏士兵们。士兵们十分愤怒,因为这座独木桥十分狭窄,只能容纳 $1$ 个人通过。假如有 $2$ 个人相向而行在桥上相遇,那么他们 $2$ 个人将无法绕过对方,只能有 $1$ 个人回头下桥,让另一个人先通过。但是,可以有多个人同时呆在同一个位置。
题目描述
突然,你收到从指挥部发来的信息,敌军的轰炸机正朝着你所在的独木桥飞来!为了安全,你的部队必须撤下独木桥。独木桥的长度为 $L$,士兵们只能呆在坐标为整数的地方。所有士兵的速度都为 $1$,但一个士兵某一时刻来到了坐标为 $0$ 或 $L+1$ 的位置,他就离开了独木桥。
每个士兵都有一个初始面对的方向,他们会以匀速朝着这个方向行走,中途不会自己改变方向。但是,如果两个士兵面对面相遇,他们无法彼此通过对方,于是就分别转身,继续行走。转身不需要任何的时间。
由于先前的愤怒,你已不能控制你的士兵。甚至,你连每个士兵初始面对的方向都不知道。因此,你想要知道你的部队最少需要多少时间就可能全部撤离独木桥。另外,总部也在安排阻拦敌人的进攻,因此你还需要知道你的部队最多需要多少时间才能全部撤离独木桥。
## 输入格式
第一行:一个整数 $L$,表示独木桥的长度。桥上的坐标为 $1\cdots L$。
第二行:一个整数 $N$,表示初始时留在桥上的士兵数目。
第三行:有 $N$ 个整数,分别表示每个士兵的初始坐标。
## 输出格式
只有一行,输出 $2$ 个整数,分别表示部队撤离独木桥的最小时间和最大时间。$2$ 个整数由一个空格符分开。
## 样例 #1
### 样例输入 #1
```
4
2
1 3
```
### 样例输出 #1
```
2 4
```
## 提示
初始时,没有两个士兵同在一个坐标。
数据范围 $1\le L\le5\times 10^3$,$0\le N\le5\times10^3$,数据保证 $
这是我的代码
#include <stdio.h>
int main()
{
int L,N,i;
int a[N];
scanf("%d",&L);输入长度
scanf("%d",&N);输入人数
for(i=0;i<N;i++)
{
scanf("%d",&a[i]);
}
int min,max,t,midle;
min=0;
max=0;
for(i=0;i<N;i++)
{
midle=L/2;
if(a[i]<=midle)
t=a[i];如果在桥左面,t=a[i]
else
t=L-a[i]+1;在桥右面,则用桥减去坐标
if(min<=t)
min=t;然后得到最小时间
}
printf("%d ",min);
for(i=0;i<N;i++)
{
midle=L/2;
if(a[i]<=midle)
t=L-a[i]+1;在桥左面则用桥的长度减去坐标
else
t=a[i];右面则是坐标
if(max<=t)
max=t;得到最大时间
}
printf("%d",max);
return 0;
}
这道题呢其实求最小距离不是很难,但是要注意我们要的不是过这个桥的最小距离,如果这样其他士兵会死的,所有最小时间是过这个桥用最快路径的最大值,这样所有士兵才能活,即每个士兵都不会相遇。而最难的是每个士兵的初始转向都不一样,并且相遇时会转向,所有我们的思维应该是,如果两个士兵相遇,那么这个两个士兵互换,即两个士兵相互穿了过去,有了这个思维后,就可以用一个for循环求出最大的时间。
当然该题也可以用贪心算法来算,如果感兴趣的小伙伴可以使用贪心算法来完成该题。