- 博客(20)
- 收藏
- 关注
原创 conda虚拟环境常用命令
查看当前存在的虚拟环境列表:创建新的虚拟环境:删除某个虚拟环境:进入虚拟环境:退出虚拟环境:查看虚拟环境中存在的包:conda list下载软件包(conda会自动配置符合环境的软件包版本):卸载软件包:查看软件包信息(包括版本和下载通道信息):批量安装包:
2024-01-03 18:34:24
688
1
原创 DBSCAN算法
目录定义算法流程代码效果演示算法优势算法劣势算法待改进之处参数选择方式参数选择效果定义DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。 该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。算法流程将所有点标为未标记点,依次遍历所有点,判断该点是否被标
2022-05-02 11:49:11
883
原创 K-mean算法
算法步骤:1、首先确定一个k值,即我们希望将数据集经过聚类得到k个集合。2、从数据集中随机选择k个数据点作为质心。3、对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到那个质心所属的集合。4、把所有数据归好集合后,一共有k个集合。然后重新计算每个集合的质心。5、如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。6、如果新质心和原质心距离
2022-04-28 19:44:46
933
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人