正则化(Regularization)

正则化通过在损失函数中添加惩罚项,降低模型复杂度,提高模型稳定性和抗干扰能力。L1正则化促使权重稀疏,适合特征选择;L2正则化则使权重普遍变小,缓解逆矩阵计算问题。适当调整正则化参数可在训练集和测试集间取得平衡。
摘要由CSDN通过智能技术生成

 

正则化的作用:

在损失函数后面加上一项关于参数w的正则化函数,由于惩罚因子\lambda的存在,使得w减小,当输入x变化时,由于w很小,所以整体的输出y波动很小,使得输出图像变平滑,提高了系统的稳定性和抗干扰能力。

正则化参数的调整:

由上图可知,当惩罚因子 \lambda增大时,训练集上的损失增大,原因是:当惩罚因子变大时,对于损失函数中正则项所占的比例变大,在优化过程中过于追求w的减小,使得原本的损失值变大。但是如果惩罚因子选取合适时,在测试集上的效果较好。

 L1与L2正则化:

 L1范数是指向量中各个元素绝对值之和,L2范数是指向量各元素的平方和然后求平方根。

L1正则化使得w变成稀疏矩阵而L2使得w普遍变小,但不会变成稀疏矩阵。原因为:将正则项看作损失函数的约束项,分别绘制损失函数与约束项关于参数w的图像,只有满足约束条件(即正则项)要求的参数w才是最终的值,由下图可知,加入L1正则项后,满足条件的参数w都在顶点处选取,因此得到的w中0偏多,而L2正则项与损失函数的交点一般不会在顶点处,得到的w不是稀疏矩阵。因此L1正则化在特征选择时比较有用,而L2是一种规则化。

在这里插入图片描述

 L2正则化的优势:

加入L2正则项,使得参数w普遍变小,但不为0,对于解决condition number(样本数小于样本维度)不好的情况下求解逆矩阵困难的问题有帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值