A数列求值
#include<iostream>
using namespace std;
int f[20190324];
int main(){
f[0] = f[1] = f[2] = 1;
for(int i = 3; i < 20190324; i++){
f[i] = (f[i - 1] + f[i - 2] + f[i - 3]) % 10000;
}
cout<<f[20190323]<<endl;
return 0;
}
B迷宫
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
#include<set>
using namespace std;
#define N 30
#define M 50
char map[N][M];
int dir[4][2]={{1,0},{0,-1},{0,1},{-1,0}};//D<L<R<U
char ch[4]={'D','L','R','U'};
int vis[N][M]={0};
struct point
{
int x,y;
string road;
point(int a,int b)
{
x=a;
y=b;
}
};
void bfs()
{
queue<point> q;
point p(0,0);
p.road="";
q.push(p);
vis[0][0]=1;
while(!q.empty())
{
point t=q.front();
q.pop();
if(t.x==N-1&&t.y==M-1)
{
cout<<t.road<<endl;
break;
}
for(int i=0;i<4;i++)
{
int dx=t.x+dir[i][0];
int dy=t.y+dir[i][1];
if(dx>=0&&dx<N&&dy>=0&&dy<M)
{
if(map[dx][dy]=='0'&&!vis[dx][dy])
{
point tt(dx,dy);
tt.road=t.road+ch[i];//记录路径
q.push(tt);
vis[dx][dy]=1;
}
}
}
}
}
int main()
{
for(int i=0;i<N;i++)
{
for(int j=0;j<M;j++)
scanf("%c",&map[i][j]);
getchar();
}
bfs();
return 0;
}
C完全二叉树的权值
思路:
入边处理,我们容易知道,每一行的最后一个数的下标都是等于(2^n)-1,比如第二行的最后一个数等于2^2-1=3,第三行的最后一个数等于2^3-1=7,用deep表示当前深度,从当前这行的第一项加到最后一项然后和最大值max_sum比较。
代码:
#include<bits/stdc++.h>
using namespace std;
int Ai[100005];
int main(){
int N;
int deep = 1;
int sum = 0;
long long max_sum = -100000000000;
int max_deep = 1;
cin>>N;
for(int i = 1; i <= N; ++i)
{
cin>>Ai[i];
sum += Ai[i];
if(i == pow(2, deep) - 1)
{
if(max_sum < sum)
{
max_deep = deep;
max_sum = sum;
}
sum = 0;
++deep;
}
}
cout<<max_deep<<endl;
return 0;
}
D组队
#include<iostream>
using namespace std;
int main()
{
cout<<490;
return 0;
}
E年号字符
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
#include <map>
#include <set>
#define int long long
using namespace std;
signed main()
{
cout << "BYQ" << endl;
return 0;
}
F数的分解
#include<iostream>
using namespace std;
int main()
{
printf("40785");
return 0;
}
G特别数的和
#include<iostream>
using namespace std;
int main()
{
int n,sum=0;
cin>>n;
for(int i=1;i<=n;i++)
{
int j=i;
while(j)
{
if(j%10==2||j%10==0||j%10==1||j%10==9)
{
sum+=i;
break;
}else j/=10;
}
}
cout<<sum<<endl;
return 0;
}
H等差数列
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long int ll;
int a[100010];
ll gcd(ll a,ll b)
{
return b==0? a:gcd(b,a%b);
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+1+n);
int x=a[2]-a[1];
for(int i=2;i<=n;i++)
{
x=gcd(x,a[i]-a[i-1]);
}
if(x==0) cout<<n<<endl;//常数列的情况
else
{
cout<<(a[n]-a[1])/x+1<<endl;
}
return 0;
}
I后缀表达式
思路:
分4种情况,
减号=0,没办法只能全部加起来
负数数目=0,排除了第1种情况,有减号,所以一定是其他数的和-最小的数
全为负数,这种最容易忽略,排除上述2种情况,所以只要有减号,一定是其他所有数的绝对值-最大负数的绝对值
其他情况,都是所有数的绝对值的和
代码:
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 200010;
LL n,m,sum=0;
LL a[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n+m+1;i++)
{
cin>>a[i];
}
if(m==0)
{
for(int i=1;i<=n+m+1;i++)
{
sum+=a[i];
}
}
else
{ sort(a+1, a+n+m+1+1);
sum=a[n+m+1]-a[1];
for(int i=2;i<=n+m;i++)
sum += abs(a[i]);
}
cout<<sum<<endl;
return 0;
}