AVL树的原理及其实现

前言

回顾我们对于二叉搜索树的了解,二叉搜索树的效率跟树的高度成反比。而且,数据插入的随机性导致普通的二叉搜索树甚至可能退化成一条“单链表”,这样的结构查找起来时间复杂度直奔O(N),这无疑是我们不想看到的。我们希望,无论数据怎么插入,二叉搜索树的结构都应该保持平衡,即看起来更加接近于完全二叉树或者满二叉树·。AVL树因此诞生。

了解AVL树

AVL树又叫平衡二叉搜索树,得名于它的发明者Georgy Adelson-Velsky和Evgenii Landis。它的出现很好的解决了二叉搜索树的效率退化问题。AVL树的特点就是任一一个节点的左右子树的高度差不超过1。这个特点可以使二叉搜索树的高度始终保持在logn的级别,从而保证了查找效率稳定在O(logn)级别。具体是怎么实现这一特点的呢?下面结合代码给您讲解。

AVL树的特点

  • AVL树具有二叉搜索树的性质,即对于任意一个节点,左子树的值均小于根节点的值,右子树的值均大于根节点的值。
  • 每个节点都有一个平衡因子属性(可视为一个int变量),记录着左右子树的高度差(一般是右子树高度减去左子树高度
  • 查找、删除、插入的时间复杂度均为O(logn).

AVL树的节点

根据AVL树的特点,AVL树的每一个节点都得有一个记录左右子树高度差的平衡因子。除此之外,还需要有一个指向父节点的指针。具体如下:

		//节点信息
	template<class K, class V>
	class AVLNode {
	public:
		AVLNode(const pair<K, V>& kv)
			:_bf(0)
			, left(nullptr)
			, right(nullptr)
			,father(nullptr)
		{
			
		}
		int _bf;//平衡因子
		pair<K, V> _kv;
		AVLNode<K, V>* left;
		AVLNode<K, V>* right;
		AVLNode<K, V>* father;
	};

调整方案

下面所述代码中,平衡二叉树的平衡因子均表示右子树高度减去左子树高度。
当我们向一颗平衡二叉树里插入一个元素,插入节点的祖先节点的平衡因子都有可能会因此改变。从当前新节点的父节点开始向上遍历,重复以下几个步骤:

  1. 用一个指针指cur向新节点表示当前节点,一个指针pa指向其父节点。
  2. 如果cur节点在pa的左子树中,那么这个pa节点的平衡因子减一,否则加一。
  3. 更新平衡因子之后,观察pa平衡因子大小。如果为0,则说明当前pa节点向上的所有父节点的平衡因子都不会改变。
  4. 如果·pa·平衡因子为-1或者1,则说明当前节点符合平衡二叉树节点特征,但是其父节点还不一定,于是继续向上遍历
  5. 如果pa平衡因子为2或者-2,则说明当前节点失衡了(左右子树的高度差大于1)!我们需要调整。

调整方案具体如下:

右单旋

如果cur的平衡因子为-1,且pa的平衡因子为-2。那么我们选择让pa节点右单旋
在这里插入图片描述

上图就是这种情况**。矩形表示一颗子树**。右旋过之后就变成了这样:
在这里插入图片描述

为什么要右单旋呢?

或者说为什么右单旋之后,pacur的平衡因子会为0呢?

假设在没有旋转的时候,pa的左子树高度为N,则右子树高度为N-2。即上图黄色矩形的表示的树的高度为N-2。
由于cur的平衡因子为-1,则cur左子树的高度为N-1,右子树的高度为N-2。即上图蓝色矩形表示的树的高度为N-2。

所以,我们完成这样一个右单旋之后,对于cur来说,左子树的高度依旧是N-1,但是右子树的高度变成了N-1,平衡因子也就变成了0。
对于pa来说,它的右子树高度依旧是N-2,但是左子树高度变成了N-2,平衡因子也变成了0。

右单旋之后还需不需要继续往上调整呢呢?答案是不用了,由于curpa的平衡因子都是0了,再往上的节点的平衡因子保持不变。

继续思考,平衡因子是没问题了,但是这样旋转会不会改变二叉搜索树的性质呢?答案也是不会的。所谓的右单旋,就是把pa变成cur的右孩子,原本cur是pa的左孩子,pa节点包括pa的右子树的值均大于以cur子树的值。旋转之后cur的左子树的值依旧小于cur节点的值,cur右子树的值依旧大于cur节点的值。对于pa来说也是如此。

右单旋代码

//右单旋
void RotateR(pNode pa) {
	pNode subL = pa->left;
	pNode subLR = subL->right;

	pa->left = subLR;
	if (subLR) subLR->father = pa;

	subL->right = pa;
	pNode ppa = pa->father;
	pa->father = subL;
	
	if (pa == _root) {
		_root = subL;
		subL->father = nullptr;
	}
	else {
		if (pa == ppa->left) {
			ppa->left = subL;
		}
		else {
			ppa->right = subL;
		}
		subL->father = ppa;
	}

	subL->_bf = pa->_bf = 0;
}

左单旋

如果cur的平衡因子为1,且pa的平衡因子为2。那么我们选择让pa节点左单旋
在理解右单旋的原理之后,对于左单旋也就容易理解了,因为两者的旋转方式都是一样的,只不过“方向”不同。
在这里插入图片描述
这种情况我们就需要对pa进行左单旋,调整之后就变成了下图所示:
在这里插入图片描述

为什么要左单旋?

参考右单旋。

假设在没有旋转的时候,pa的左子树高度为N,则右子树高度为N+2。即上图黄色矩形的表示的树的高度为N。
由于cur的平衡因子为1,则cur右子树的高度为N+1,左子树的高度为N。即上图蓝色矩形表示的树的高度为N。

所以,我们完成这样一个左单旋之后,对于cur来说,右子树的高度依旧是N+1,但是左子树的高度变成了N+1,平衡因子也就变成了0。
对于pa来说,它的左子树高度依旧是N,但是右子树高度变成了N,平衡因子也变成了0。

左单旋代码

//左单旋
void RotateL(pNode pa) {
	pNode subR = pa->right;
	pNode subRL = subR->left;

	pa->right = subRL;
	if (subRL) subRL->father = pa;

	subR->left = pa;
	pNode ppa = pa->father;
	pa->father = subR;

	if (pa == _root) {
		_root = subR;
		subR->father = nullptr;
	}
	else {
		if (pa == ppa->left) {
			ppa->left = subR;
		}
		else {
			ppa->right = subR;
		}
		subR->father = ppa;
	}

	subR->_bf = pa->_bf = 0;
}

左右双旋

如果cur的平衡因子为1,且pa的平衡因子为-2。那么我们选择先让pa节点的左孩子左单旋。然后再让pa右单旋

这种情况只对pa进行右单旋不能保证让所有节点平衡,我们自能
在这里插入图片描述
图中的h表示子树的高度
在这里插入图片描述

仔细观察上图AVL树左右双旋的过程,就能明白为什么要双旋能让每个节点再次平衡了。值得注意的是,在双旋之后,pa于subL节点的平衡因子并不是固定的,它们随着新节点插入到subLR的位置的而变化。
例如:
在这里插入图片描述

左右双旋之后平衡因子的情况

  • 情况(1)如果新节点插入到subLR的左子树中,在双旋之后,这个新节点会变成subL的右子树节点,此时subL的平衡因子为0,pa的平衡因子为1
  • 情况(2)如果新节点插入到subLR的右子树中,双旋之后,这个新结点则会变成pa的左子树节点,此时pa的平衡因子为0,subL的平衡因子为-1
  • 情况(3)如果新插入节点本身就是subLR节点,即此时subLR的平衡因子为0。也就意味着双旋之后,pa和subL的平衡因子为0.
  • 但无论是上面的哪种情况,双旋之后,subLR的平衡因子都是0.

那更新pa和subL的平衡因子时如何区分是以上哪种情况呢?看subLR的平衡因子。如果是-1,表示新节点在subLR的左子树中,即情况(1)。如果是1,说明新节点在subLR的右子树中,即情况(2)。如果是0,表示新节点就是subLR本身,即情况(3)。

左右双旋代码实现

有了上面左右单旋的代码,左右双旋就能通过使用封装它们的函数来实现了:

//左右双旋
void RotateLR(pNode pa) {
	pNode subL = pa->left;
	pNode subLR = subL->right;

	int subLR_bf = subLR->_bf;

	RotateL(subL);
	RotateR(pa);

	if (subLR_bf == -1) {
		pa->_bf = 1 ;
		subL->_bf = 0;
	}
	else if (subLR_bf == 1) {
		pa->_bf = 0;
		subL->_bf = -1;
	}
	else if (subLR_bf == 0) {
		pa->_bf = 0;
		subL->_bf = 0;
	}
	else {
		//perror("RotateLR");
	}
	subLR->_bf=0;
	return;
}

右左双旋

如果cur的平衡因子为-1,且pa的平衡因子为2。那么我们选择先让pa节点的右孩子右单旋。然后再让pa左单旋
原理和左右双旋一致,只不过旋转的方向相反:
在这里插入图片描述
右左双旋的平衡因子的情况参考左右双旋,我这里就不做过多赘述了。

同样右左双旋的代码可以使用单旋的接口来实现

右左双旋代码:

//右左双旋
void RotateRL(pNode pa) {
	pNode subR = pa->right;
	pNode subRL = subR->left;

	int subRL_bf =subRL->_bf;

	RotateR(subR);
	RotateL(pa);

	if (subRL_bf == -1) {
		pa->_bf = 0;
		subR->_bf = 1;
	}
	else if (subRL_bf == 1) {
		pa->_bf = -1;
		subR->_bf = 0;
	}
	else if (subRL_bf == 0) {
		pa->_bf = 0;
		subR->_bf = 0;
	}
	else {
		//perror("RotateRL");
	}
	subRL->_bf=0;

}

实现AVL树代码

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>

using namespace std;

namespace k_val {
	//节点信息
	template<class K, class V>
	class AVLNode {
	public:
		AVLNode(const pair<K, V>& kv)
			:_bf(0)
			,_kv(kv)
			, left(nullptr)
			, right(nullptr)
			,father(nullptr)
		{
			
		}
		int _bf;//平衡因子
		pair<K, V> _kv;
		AVLNode<K, V>* left;
		AVLNode<K, V>* right;
		AVLNode<K, V>* father;
	};


	template<class K, class V>
	class AVLTree {

		typedef AVLNode<K, V> Node;
		typedef Node* pNode;
	public:
		AVLTree()
			:_root(nullptr)
		{

		}

		//删除
		bool Erase(const K& key) {
			if (_root == nullptr)return false;
			if (!Find(key))return false;
			pNode cur = _root;
			pNode pa = _root;
			while (cur) {
				if (cur->_kv.first < key) {
					pa = cur;
					cur = cur->right;
				}
				else if (cur->_kv.first > key) {
					pa = cur;
					cur = cur->left;
				}
				else break;
			}

			//被删除的节点孩子有空
			if (cur->left == nullptr) {
				if (cur == _root) {//如果被删除的节点是头节点
					pNode t = _root;
					_root = cur->right;
					delete t;
				}
				else if (pa->_kv.first < cur->_kv.first) {
					pa->right = cur->right;
					delete cur;
				}
				else {
					pa->left = cur->right;
					delete cur;
				}

			}
			else if (cur->right == nullptr) {
				if (cur == _root) {//如果被删除的节点是头节点
					pNode t = _root;
					_root = cur->left;
					delete t;
				}
				else if (pa->_kv.first < cur->_kv.first) {
					pa->right = cur->left;
					delete cur;
				}
				else {
					pa->left = cur->left;
					delete cur;
				}

			}//cur的两个孩子节点都不为空
			else {
				pNode ffa = cur;
				pNode minright = cur->right;
				while (minright->left) {
					ffa = minright;
					minright = minright->left;
				}

				ffa->left = minright->right;
				std::swap(minright->_kv.first, cur->_kv.first);
				delete minright;
			}


		}


		//查找
		pNode Find(const K& key) {
			assert(_root != nullptr);
			pNode cur = _root;
			while (cur) {
				if (cur->_kv.first < key) {
					cur = cur->right;
				}
				else if (cur->_kv.first > key) {
					cur = cur->left;
				}
				else return cur;

			}
			return nullptr;
		}

		//插入
		bool Insert(const pair<K,V>& kv) {
			if (_root == nullptr) {
				_root = new Node(kv);
				return true;
			}

			pNode cur = _root;
			pNode pa = nullptr;
			while (cur) {
				if (cur->_kv.first < kv.first) {
					pa = cur;
					cur = cur->right;
				}
				else if (cur->_kv.first > kv.first) {
					pa = cur;
					cur = cur->left;
				}
				else return false;//已经存在无需插入

			}
			cur = new Node(kv);
			if (pa->_kv.first >kv.first ) {
				pa->left = cur;
			}
			else {
				pa->right = cur;
			}
			cur->father = pa;
			//更新平衡因子
			while (pa) {
				if (cur == pa->left) {
					pa->_bf--;
				}
				else {
					pa->_bf++;
				}

				if (pa->_bf == 0) {
					break;
				}

				else if (pa->_bf == 1 || pa->_bf == -1) {
					cur = pa;
					pa = pa->father;
				}
				else if (pa->_bf == -2 || pa->_bf == 2) {
					//需要调整,一共有四种调整方案
					if (pa->_bf == -2 && cur->_bf == -1) {
						//右单旋
						RotateR(pa);
					}
					else if (pa->_bf == 2 && cur->_bf == 1) {
						//左单旋
						RotateL(pa);
					}
					else if (pa->_bf == -2 && cur->_bf == 1) {
						RotateLR(pa);
					}
					else if (pa->_bf == 2 && cur->_bf == -1) {
						RotateRL(pa);
					}
					else {
						break;
					}
					break;
				}


			}

		}
		//遍历
		void InOrder() {
			_InOrder(_root);
			cout << endl;
		}
		//旋转
		//右单旋
		void RotateR(pNode pa) {
			pNode subL = pa->left;
			pNode subLR = subL->right;

			pa->left = subLR;
			if (subLR) subLR->father = pa;

			subL->right = pa;
			pNode ppa = pa->father;
			pa->father = subL;
			
			if (pa == _root) {
				_root = subL;
				subL->father = nullptr;
			}
			else {
				if (pa == ppa->left) {
					ppa->left = subL;
				}
				else {
					ppa->right = subL;
				}
				subL->father = ppa;
			}

			subL->_bf = pa->_bf = 0;
		}

		//左单旋
		void RotateL(pNode pa) {
			pNode subR = pa->right;
			pNode subRL = subR->left;

			pa->right = subRL;
			if (subRL) subRL->father = pa;

			subR->left = pa;
			pNode ppa = pa->father;
			pa->father = subR;

			if (pa == _root) {
				_root = subR;
				subR->father = nullptr;
			}
			else {
				if (pa == ppa->left) {
					ppa->left = subR;
				}
				else {
					ppa->right = subR;
				}
				subR->father = ppa;
			}

			subR->_bf = pa->_bf = 0;
		}
		//右左双旋
		void RotateRL(pNode pa) {
			pNode subR = pa->right;
			pNode subRL = subR->left;

			int subRL_bf =subRL->_bf;

			RotateR(subR);
			RotateL(pa);

			if (subRL_bf == -1) {
				pa->_bf = 0;
				subR->_bf = 1;
			}
			else if (subRL_bf == 1) {
				pa->_bf = -1;
				subR->_bf = 0;
			}
			else if (subRL_bf == 0) {
				pa->_bf = 0;
				subR->_bf = 0;
			}
			else {
				//perror("RotateRL");
			}
			subRL->_bf=0;

		}
		//左右双旋
		void RotateLR(pNode pa) {
			pNode subL = pa->left;
			pNode subLR = subL->right;

			int subLR_bf = subLR->_bf;

			RotateL(subL);
			RotateR(pa);

			if (subLR_bf == -1) {
				pa->_bf = 1 ;
				subL->_bf = 0;
			}
			else if (subLR_bf == 1) {
				pa->_bf = 0;
				subL->_bf = -1;
			}
			else if (subLR_bf == 0) {
				pa->_bf = 0;
				subL->_bf = 0;
			}
			else {
				//perror("RotateLR");
			}
			subLR->_bf=0;
			return;
		}


	private:
		void _InOrder(pNode root) {
			if (root == nullptr)return;
			_InOrder(root->left);
			cout << root->_kv.first << " " << root->_kv.second << endl;
			_InOrder(root->right);
		}
		pNode _root;
	};
};

简单测试

通过上面的学习,现在我们就能基本实现AVL树的插入操作了。为了检查代码的正确性,下面给出一组测试数据插入到AVL树中,并遍历输出观察结果:

#include<iostream>
#include"myAVLTree.h"
using namespace std;
using namespace k_val;

int main() {
	int a[10] = { 1,7,8,3,4,9,10,2,6,5 };
	AVLTree<int, int> avl;
	for (int i = 0; i < 10; i++) {
		avl.Insert({ a[i],a[i] });
 	}

	avl.InOrder();

	return 0;
}

在这里插入图片描述
如果想观察·内部结构,可以自行打开调试窗口一一查看。

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值