找鞍点(C语言)

一个矩阵元素的“鞍点”是指该位置上的元素值在该行上最大、在该列上最小。

题要求编写程序,求一个给定的n阶方阵的鞍点。

思路:每一行上最大值的列数、每一列上最小值的行数用两个数组存储,后进行比较

#include<stdio.h>
int main()
{
	int n,data[10][10],row[10],col[10];
	scanf("%d",&n);
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			scanf("%d",&data[i][j]);
		}
	}
	for(int i=0;i<n;i++)
	{
		row[i]=0;
		for(int j=1;j<n;j++)
		{
			if(data[i][j]>data[i][row[i]])
			{
				row[i]=j;     //此行最大值的列数 
			}
		}
	}
	for(int i=0;i<n;i++)      //此列最小值的行数 
	{
		col[i]=0;
		for(int j=1;j<n;j++)
		{
			if(data[j][i]<data[col[i]][i])
			{
				col[i]=j;
			}
		}
	}
	
	for(int i=0;i<n;i++)     //按行遍历
	{
		if(i==col[row[i]])       //row[i]此行最大的的值的列数 col此列上最小的的行数相等即可
		{
			printf("%d %d\n",col[i],row[i]);
			return 1;
		}
	}
	printf("NONE");    //未找到
	return 0;
}

鞍点是指函数在某个点的梯度为零,且该点的“拐点”(也就是 Hessian 矩阵矩阵特征有正有负)的点。在 C 语言中,可以使用数优化库,如 GSL(GNU Scientific Library)或 NAG(Numerical Algorithms Group)库来到函数的鞍点。 下面是使用 GSL 库到函数的鞍点的示例代码: ```c #include <stdio.h> #include <gsl/gsl_multimin.h> // 定义函数 double func(const gsl_vector *v, void *params) { double x = gsl_vector_get(v, 0); double y = gsl_vector_get(v, 1); return x * x - y * y; } // 定义函数的梯度 void grad(const gsl_vector *v, void *params, gsl_vector *df) { double x = gsl_vector_get(v, 0); double y = gsl_vector_get(v, 1); gsl_vector_set(df, 0, 2 * x); gsl_vector_set(df, 1, -2 * y); } int main() { const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; int iter = 0, status; const size_t n = 2; double eps = 1e-8; // 初始点 gsl_vector *x = gsl_vector_alloc(n); gsl_vector_set(x, 0, 1.0); gsl_vector_set(x, 1, 1.0); // 定义函数及梯度 gsl_multimin_function_fdf my_func; my_func.n = n; my_func.f = &func; my_func.df = &grad; my_func.fdf = NULL; my_func.params = NULL; // 定义优化器类型 T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc(T, n); // 初始化优化器 gsl_multimin_fdfminimizer_set(s, &my_func, x, 0.01, eps); do { iter++; status = gsl_multimin_fdfminimizer_iterate(s); if (status) break; status = gsl_multimin_test_gradient(s->gradient, eps); } while (status == GSL_CONTINUE && iter < 100); printf("Minimum found at:\n"); printf("%5.5f %5.5f\n", gsl_vector_get(s->x, 0), gsl_vector_get(s->x, 1)); gsl_multimin_fdfminimizer_free(s); gsl_vector_free(x); return 0; } ``` 该示例代码中,我们首先定义了函数 `func` 和它的梯度 `grad`。然后,我们使用 GSL 库中的 `gsl_multimin_fdfminimizer` 类型来定义优化器。在初始化优化器时,我们通过 `gsl_multimin_fdfminimizer_set` 函数将函数及梯度传递给了优化器。最后,我们使用 `gsl_multimin_fdfminimizer_iterate` 函数迭代求解函数的鞍点,并使用 `gsl_multimin_test_gradient` 函数检查是否已收敛。 需要注意的是,由于鞍点通常比最小最大更难以到,因此需要更多的迭代次数和更小的收敛阈
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值