树状数组详解!

本文详细介绍了树状数组(BIT)的概念,包括其与线段树的对比、基本操作如查询区间和修改单点值的实现,并通过实例解析了树状数组的低效构造方法和高效构造方法。同时,文章阐述了树状数组的原理,利用二进制特性进行区间划分,以及lowbit函数的作用。最后,给出了完整的C++代码示例,用于查询和修改数组元素。
摘要由CSDN通过智能技术生成

数据结构——树状数组(BIT)

链接 树状数组例题


  • 树状数组支持的基本的操作为:
  1. 查询区间和
  2. 修改单点值

提到树状数组我们很快的想到和他关系很近的线段树了,树状数组可以做的操作线段树其实都可以做,那么还为什么还要学习树状数组呢,原因当然是树状数组实现起来相对于线段树要简单太多,这里只是说的代码实现起来,但原理理解起来还是线段树更简单,同样树状数组有其自己的局限性,树状数组只能解决一部分简单的问题,复杂的问题该线段树实现,还是线段树实现,该其他的数据结构就其他的数据结构。

学数据结构,首先当然是明白其中的原理啦!


  • 首先我们要以二进制的角度来思考下面的问题:
    (0,13] 1—13 这个区间可以怎么表示?

    1—2,3—4, 5—7,8—13
    1—10, 11—13
    1—2, 3—13

    是不是会有非常多的表示,那么我们用二进制表示范围呢?
    (0000,1011] 1—13 可以怎么用二进制区间表示呢,我们尽量巧妙一些
    我们先来想另一个问题,13的二进制1101是不是可以表示为:
    1101 = 1000 + 0100 + 0001
    那么1—13这个区间是不是可以表示为一个,设n=13, 左端点为n减去n的最后一个1,右端点还是n 的一个区间,下一次n就减少了最后一个1的大小,区间总共的个数为最开始n二进制中1的个数
    可以表示为(区间表示为左开右闭,左端点不包括):
    1100 到 1101 解释: 左端点为1101-0001为1100 , 右端点不变还是1101
    1000 到 1100 解释: 左端点为1100-0100为1000 ,右端点不变还是1100
    0000 到 1000 解释: 左端点为1000-1000为0000 ,右端点不变还是1000

  • lowbit函数
    这个函数就是我们用来求二进制中最后一个1的,所谓最后一个1就是从右往左出现的第一个1以及它后面跟的那些零,所以最后一个1也是一个二进制数,比如10101100中最后一个1就是10101100也就是100
    函数实现也很简单:


int lowbit(int x)
{
	return x&-x;
}

  • 实现原理就是利用了计算机中负数的补码表示,负数的补码就是这个数的最后一个1及其这个1后面的0都不变,其余数(不包括符号位)全部取反,比如:
    -12的二进制表示为1100(我们不讨论符号位)那么-12的补码就是
    0100带有下划线的是不变的,其余按位取反,然后在和12按位与操作,12是正数,补码就是它本身,所以就是0100 & 1100 按位与是两个位置都是1才是1不然都是0那结果就是最后一个1不变其余前面都变成0,这样按位与之后的数就是最后一个1的二进制表示了

  • 现在我们再来看一下1到13区间的表示(左开右闭):
    (1100—1101】13到13
    (1000—1100】9到12
    (0000—1000】1到8
    第一个区间长度为1,第二个区间长度为4,第三个区间长度为8,我们来思考一下这个长度和右端点有什么联系呢,是不是这个长度就是右端点的最后一个1的大小也就是lowbit(右端点),第一个区间右端点lowbit为0001,区间长度就为1,第二个区间右端点的lowbit为100,长度就为4,第三个区间的lowbit为1000,区间长度就为8,是不是很神奇
    这样我们相求1到n的区间和,按照n的二进制中的1的位置来划分区间达到了 不重不漏的目的。

那么现在我们规定一个数组C,C[x]就代表以x为区间右端点,以lowbit(x)为这个区间长度的区间和,因为是左开右闭的所以这个区间也就是x-lobit(x)+1到x,我们要求1—n的区间和那么我们就规定n个C[x],我们来用一个经典的图来表示C数组于原数组的关系,我们规定A数组为原数组。
我们以13(1101)来说明
树状数组

这里我们用红色代表是C数组,黑色代表原始的A数组,从图中我们就可以很好地看出来每一个C[i]所包含的范围
还记得我们最开始的问题吗,求1到13的区间和,也就是a1+a2+a3+…+a13,不过我们以二进制的视角发现了另一种求法,1到13(1101)的区间我们划分为为了:
(1100,1101]
(1000,1100]
(0000,1000]
这三个区间可以用我们新定义的C数组的C[13]+C[12]+C[8],那么这三个区间是怎么找出来的呢,13(1101)= 0001 + 0100 + 1000
现在再看,我们就是是依次减去13二进制的最后一个1得到的一个区间的右端点,区间长度就是减去的这个最后一个1的大小,我们是从后往前拼凑1到13这个区间就可以了,也就是ans+=c[13], ans += c[13-lowbit(13)], ans += …,这样我们的求前缀和的代码就出来了:

求前缀和

  • 因为求前缀和是通过不断减Lowbit得到的,所以最多logn次,也就是这个数用二进制表示的长度,所以求前缀和时间复杂度为logn

int query(int x)
{
	//求1到x的前缀和
	int res=0;
	for(int i=x;i>0;i-=lowbit(i))// 这里大于零是因为我们从1开始的
	{
		res+=C[i];
	}
	return res;
}

修改单点值

  • 修改数组A的某个元素的值我们又该怎么维护这个数组数组呢?

    我们需要找到所有个包含这个点的区间然后对其进行相应的加法或减法,那么我们就要找到所有包含这个数的C数组,然后对其进行更改。
    现在我们先来看一下每个C[i]所包含的全部子区间和他自己都有什么关系:
    我们以12(1100)举例:
    C[12]是(1100-0100,1100】也就是1001到1100,他所包含的都有啥呢,首先肯定有A[12]吧,
    这里要减去1是为了让它变成上面用减去lowbit()来表示区间,也就是给我们机会让这个数加上lowbit(x) = 12, 因为它一定包含A[12],最后加上A[12]便是了,然后减去一后再用上面的来表示区间
    所以我们可以先去掉A[12]然后区间变成了(1000,1011】这时候就转化为这个区间该如何表示了,按照一开始我们用二进制中1的位置来划分区间来算,就可以得到:
    1010—1011 C11
    1000—1010 C10
    之后就不能再减去最后一个1了因为原本要求的区间范围就是从1000开始的所以到这里就结束了,也就是减去1后原本最后连续的0变成的1,全部”用完“后区间就划分好了,不要动原本的区间左端点。这里还需要说明的一点是,这里我们找到的A12,C11,C10是C12下面的第一层,解释:C9也在C12下但是C9已经在C10下了,就不属于C12的下面的一层了,关于这个下面还有具体解释。
    C12=A12 + C11 + C10
    我们从这里可以看出来,任何一个Cn我们都可以先把An收了,然后区间变为了(n-lowbit(n),n-1]这个范围,然后我们再按照一开始这里面1的位置找其他的C[i],我们来推广一下:


    任何形式为n = xxxx111yyy的C[n]我们用y来表示0,它表示的范围是
    (xxxx110000, xxxx111yyy】,然后我们把A[n]摘出来后,表示为:
    (xxxx110000, xxxx110111】,然后我们发现区间范围其实和最后一个1有很大的关系,因为减一操作,所以原本最后一个1为1000变为0111,可选范围也就成为了:xxxxx0000到xxxxx0111,可以试着理解理解,然后再具体的区间就可以按照之前的方式来查找分别为C[xxxx0111],C[xxxx0110],C[xxxx0100],我们就可以看出来有多少个子C根源于n末尾有多少个连续的0,也就是减一后他们都会变成1.换句话说就是加上最后一个1它们会变回C[xxxx1000].

  • 我们上面所求的包含的区间都是直接包含的区间,就是它的确切的下一层(从后往前凑够整个区间的第一条链)它覆盖的区间就比如12是A[12],C[11],C[10]而没有C[9],C[8]

我们发现它直接包含的区间都是:
还是那xxxx111yyy来理解,减一后就是xxxx110111,最后肯定是0后面若干个1,划线部分是减一操作后后面连续0变成的1的部分,我们来想一下如何回到xxxx111yyy,我们按照后面1的位置划分区间是不断减最后的1的操作得到的直接被覆盖的C数组,那我们看一下,减去1的C数组再加上当前的最后一个1是不是得进位了,变成了xxxx111yyy,比如得到的一个C是xxxx110110,他加上0000000010后就是n 或者xxxx110100加上0000000100也是n,这样我们就可以看出减一是为了获得最后x个连续的1,这x个连续个1又可以分出x个区间,也就是x个c,这x个c就是C[n]直接包含的C数组,这样的c加上它自己的最后一个1就等于n,所以我们就可以知道每个C加上它自己的lowbit就可以到直接包含它的父亲区间C所以修改单点值的操作可以为不断找它的父亲区间(c[x],c[x+lowbit(x)], 令y=x+lowbit(x), c[y+lowbit(y)],…,一直<=n为止):

  • 因为修改单点值,是通过不断加lowbit实现的,最多logn次,所以修改单点值的时间复杂度为logn

void change(int idx,int x)
{
	A[idx]+=x;
	for(int i=idx;i<=n;i+=lowbit(i))
	{
		C[i]+=x;
	}
	return ;
}

构建树状数组C

根据C[i]表示的区间为(i-lowbit(i),i]即【i-lowbit(i)+1,i】的区间和
直接上代码:

  • 一般会用n个改变A数组值来建数,改变数值是logn,一共n次,所以时间复杂度为nlogn

void build()//这个是用来明白C数组的由来,一次了事,但有点慢,可能会n^2
{
	for(int i=1;i<=n;i++)
	{
		for(int j=i-lowbit(i)+1;j<=i;j++)
		{
			C[i]+=A[j];
		}
	}

	return ;
}
//
void build()//这个看着麻烦点但,只有nlogn时间复杂度
{
	for(int i=1;i<=n;i++)
	{
	change(i, A[i]);
	}
return ;	
}

如果我们再图中把每个C对应的下一层包含的C从上往下带箭头连起来,然后从最下面按找修改每一个单值需要的父节点从下往上带箭头连起来,就会得到一个有向无环图

完整代码

  • 来一个完整的带有查询区间和,和修改单点值得例子,因为我们上面求得都是前缀和,我们想要L-R区间和,我们可以先求R得前缀和再减去L-1的前缀和就是我们所求区间L-R的区间和了

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5;
int n, l, r, idx, c;
int A[N], C[N];

int lowbit(int x)
{
	return x & -x;
}

int query(int x)
{
	//求1到x的前缀和
	int res = 0;
	for(int i = x; i > 0;i -= lowbit(i))
	{
		res += C[i];
	}
	return res;
}

//void build()
//{
//	for( int i = 1; i <= n; i ++)
//	{
//		for(int j = i-lowbit(i) + 1; j <= i; j ++)
//		{
//			C[i] += A[j];
//		}
//	}
//
//	return ;
//}

void change(int idx, int x)
{
	A[idx]+=x;
	for(int i = idx; i <= n; i += lowbit(i))
	{
		C[i] += x;
	}
	return ;
}


void build()
{
	for(int i = 1; i <= n; i ++)
	{
	change(i, A[i]);
	}
	return ;	
}

int  main()
{
	cin >> n;
	for(int i = 1; i <= n; i ++)
	cin >> A[i];
	build();
	cin >> idx >> c;
	change(idx, c);
	cin >> l >> r;
	cout << query(r) - query(l-1) << endl;
	return 0;
}



  • 以后有时间还会补充一下树状数组的扩展应用
  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向夕阳Salute

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值