题目大意:给定一张图,求最大的环。
法一:dfs暴力
(碎碎念:开始没有觉得dfs暴力能过,毕竟数据范围是1e5,暴力的最差复杂度可能直接会飙到1e10(1e5个点凑成一个环),但是蓝桥杯也不愧被誉为"暴力杯",数据比较体贴,数据里面没有这种的极端情况。大概250ms)
思路:每个点跑一遍dfs,如果dfs过程中遇到了该点,则表示构成了一个环。dfs过程中记录一下路径长度,如果构成了环则更新一下最大值即可。
代码:
#include<bits/stdc++.h>
using namespace std;
int a[100005];
bool st[100005];
int ans=0;
void dfs(int nod,int length,int start){
if(nod==start){
ans=max(ans,length);
return ;
}
else if(st[nod]){
return ;
}
st[nod]=1;
dfs(a[nod],length+1,start);
}
int main(){
int n;cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=n;i++){
memset(st,0,sizeof st);
st[i]=1;
dfs(a[i],1,i);
}
cout<<ans;
}
法二:tarjan算法求最大强连通分量
(这个解法才应该算是比较合理的解法,大概20ms,时间优化了10倍)
思路:每个点跑一遍tarjan,求最大的强连通分量就行。比较简单的模板题。
代码:
#include<bits/stdc++.h>
using namespace std;
int a[100005];
int dfn[100005],low[100005],idx;
stack<int>stk;
bool in_stk[100005];
int ans=0;
void tarjan(int u){
dfn[u]=low[u]=++idx;
stk.push(u);in_stk[u]=1;
int j=a[u];
if(!dfn[j]){
tarjan(j);
low[u]=min(low[u],low[j]);
}else if(in_stk[j]){
low[u]=min(low[u],dfn[j]);
}
if(dfn[u]==low[u]){
int k=0;
int t;
do{
t=stk.top();stk.pop();
in_stk[t]=0;
k++;
}while(t!=u);
ans=max(ans,k);
}
}
int main(){
int n;cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=n;i++)
tarjan(i);
cout<<ans;
}