[蓝桥杯2018初赛]小朋友崇拜圈(dfs暴力 / Tarjan求强连通分量)

题目大意:给定一张图,求最大的环。

法一:dfs暴力

(碎碎念:开始没有觉得dfs暴力能过,毕竟数据范围是1e5,暴力的最差复杂度可能直接会飙到1e10(1e5个点凑成一个环),但是蓝桥杯也不愧被誉为"暴力杯",数据比较体贴,数据里面没有这种的极端情况。大概250ms)

思路:每个点跑一遍dfs,如果dfs过程中遇到了该点,则表示构成了一个环。dfs过程中记录一下路径长度,如果构成了环则更新一下最大值即可。

代码:

#include<bits/stdc++.h>
using namespace std;
int a[100005];
bool st[100005];
int ans=0;
void dfs(int nod,int length,int start){
	if(nod==start){
		ans=max(ans,length);
		return ;
	}
	else if(st[nod]){
		return ;
	}
	st[nod]=1;
	dfs(a[nod],length+1,start);
}
int main(){
	int n;cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	for(int i=1;i<=n;i++){
		memset(st,0,sizeof st);
		st[i]=1;
		dfs(a[i],1,i);
	}
	cout<<ans;
} 

法二:tarjan算法求最大强连通分量

(这个解法才应该算是比较合理的解法,大概20ms,时间优化了10倍)

思路:每个点跑一遍tarjan,求最大的强连通分量就行。比较简单的模板题。

代码:

#include<bits/stdc++.h>
using namespace std;
int a[100005];
int dfn[100005],low[100005],idx;
stack<int>stk;
bool in_stk[100005];
int ans=0;
void tarjan(int u){
	dfn[u]=low[u]=++idx;
	stk.push(u);in_stk[u]=1;
	
	int j=a[u];
	
	if(!dfn[j]){
		tarjan(j);
		low[u]=min(low[u],low[j]);
	}else if(in_stk[j]){
		low[u]=min(low[u],dfn[j]);
	}
	
	
	if(dfn[u]==low[u]){
		int k=0;
		int t;
		do{
			t=stk.top();stk.pop();
			in_stk[t]=0;
			k++;
		}while(t!=u);
		ans=max(ans,k);
	}
}
int main(){
	int n;cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	for(int i=1;i<=n;i++)
	tarjan(i);
	cout<<ans;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值