蓝桥杯2023年-阶乘的和(数学推理,C++)

题目描述

给定 n 个数 Ai,问能满足 m! 为∑ni=1(Ai!) 的因数的最大的 m 是多少。其中 m! 表示 m 的阶乘,即 1 × 2 × 3 × · · · × m。

思路

我们发现m最大为所有A中的最小值,但是如果有Ai+1个Ai相同,则他们可以合并为Ai+1,

即:A!*(A+1)=(A+1)!,所以我们可以先从小到大对A进行合并,让A的最小值尽可能大,最后剩下的最小值就是m所能取到的最大值了。

代码

#include<bits/stdc++.h>
using namespace std;
#define int long long
void solve(){
    int n;cin>>n;
    map<int,int>mp;
    priority_queue<int,vector<int>,greater<int>>q;
    for(int i=0;i<n;i++){
        int a;cin>>a;
        mp[a]++;
        q.push(a);
    }
    while(q.top()+1<=mp[q.top()]){
        int t=q.top();
        int k=q.top()+1;
        q.push(t+1);
        mp[t+1]++;
        while(k--){
            q.pop();
            mp[t]--;
        }
    }
    cout<<q.top();
     
}
signed main(){
    int T=1;
    // cin>>T;
    while(T--){
        solve();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值