题目描述
有一个长度为 n 的数组(n 是 10 的倍数),每个数 ai 都是区间 [0, 9] 中的整数。小明发现数组里每种数出现的次数不太平均,而更改第 i 个数的代价为bi,他想更改若干个数的值使得这 10 种数出现的次数相等(都等于n/10),请问代价和最少为多少。
思路
平均后每个数的数量ned是确定的:n/10,
我们可以把0~9数字可以分成两类:数量大于ned的数字,数量小于ned的数字。(cnt[i]记录数字的出现次数)
我们的目标就是将 数量大于ned的数字 转化为 数量小于ned的数字。
转换时要使代价最小,我们可以将代价放入小根堆中,依次取 代价最小 且 数量大于ned 的数字 转化为 任意 数量小于ned的数字即可。
代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<long long,long long>
int cnt[10];
signed main(){
int n;cin>>n;
priority_queue<pii,vector<pii>,greater<pii>>q;
for(int i=0;i<n;i++){
int a,b;cin>>a>>b;
cnt[a]++;
q.push({b,a});
}
int ned=n/10;
int ans=0;
for(int i=0;i<10;i++){
while(cnt[i]<ned){
while(q.size()&&cnt[q.top().second]<=ned){
q.pop();
}
if(q.size()&&cnt[q.top().second]>ned){
cnt[i]++;
cnt[q.top().second]--;
ans+=q.top().first;
q.pop();
}
}
}
cout<<ans;
}