第1关:感知机 - 西瓜好坏自动识别
#encoding=utf8
import numpy as np
#构建感知机算法
class Perceptron(object):
def __init__(self, learning_rate = 0.01, max_iter = 200):
self.lr = learning_rate
self.max_iter = max_iter
def fit(self, data, label):
'''
input:data(ndarray):训练数据特征
label(ndarray):训练数据标签
output:w(ndarray):训练好的权重
b(ndarry):训练好的偏置
'''
#编写感知机训练方法,w为权重,b为偏置
self.w = np.array([1.]*data.shape[1])
self.b = np.array([1.])
#********* Begin *********#
i = 0
while i < self.max_iter:
flag = True
for j in range(len(label)):
if label[j] * (np.inner(self.w, data[j]) + self.b) <= 0:
flag = False
self.w += self.lr * (label[j] * data[j])
self.b += self.lr * label[j]
if flag:
break
i+=1
#********* End *********#
def predict(self, data):
'''
input:data(ndarray):测试数据特征
output:predict(ndarray):预测标签
'''
#********* Begin *********#
y = np.inner(data, self.w) + self.b
for i in range(len(y)): # range(0,6)
if y[i] >= 0:
y[i] = 1
else:
y[i] = -1
predict = y
#********* End *********#
return predict
第2关:scikit-learn感知机实践 - 癌细胞精准识别
#encoding=utf8
import os
if os.path.exists('./step2/result.csv'):
os.remove('./step2/result.csv')
#********* Begin *********#
import pandas as pd
train_data = pd.read_csv('./step2/train_data.csv')
train_label = pd.read_csv('./step2/train_label.csv')
train_label = train_label['target']
test_data = pd.read_csv('./step2/test_data.csv')
from sklearn.linear_model.perceptron import Perceptron
clf = Perceptron(eta0 = 0.01,max_iter = 200)
clf.fit(train_data, train_label)
result = clf.predict(test_data)
frameResult = pd.DataFrame({'result':result})
frameResult.to_csv('./step2/result.csv', index = False)
#********* End *********#