机器学习|感知机

本文探讨了如何使用感知机模型对鸢尾花数据集进行分类,详细介绍了运用感知机进行鸢尾花分类的过程。
摘要由CSDN通过智能技术生成

运用感知机模型实现对鸢尾花分类

运用感知机实现对鸢尾花进行分类
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)

df=pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)   #读取数据

class Perceptron():
    """自定义感知机算法"""
    def __init__(self,learning_rate=0.01,num_iter=50,random_state=1):    #类的一个方法  该方法里面包含三个属性
        self.learning_rate=learning_rate
        self.num_iter=num_iter
        self.random_state=random_state
    
    def fit(self,x,y):                                                    
        rgen=np.random.RandomState(self.random_state)
        self.w=rgen.normal(loc=0.0,scale=0.01,size=1+x.shape[1])          #正态分布   

        self.errors=[]                                                   

        for _ in range(self.num_iter):
            errors=0
            for x_i,target in zip(x,y):
                update=self.learning_rate*(target-self.predict(x_i))
                self.w[1:]+=update*x_i
                self.w[0]+=update
                errors+=int(update!=0.0)
            self.errors.append(errors)
        return self
    def predict_input(self,x):
        return np.dot(x,self.w[1:])+self.w[0]      #wx+b
    
    def predict(self,x):
        return np.where(self.predict_input(x)>=0.0<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值