BP神经网络的推导

目录

什么是BP神经网络

​编辑 隐藏层神经元的设置方法:

BP神经网络的推导

 第一层是输入层

第二层是隐含层

隐含层作用

 第三层是输出层

 权重

 sigmoid函数

 假设验证sigmoid函数

损失函数采用均方差

 输入层--->隐含层: 计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

隐含层--->输出层: 计算输出层神经元o1和o2的值:

反向计算

计算总误差 总误差

 隐含层---->输出层的权值更新:

 隐含层---->隐含层的权值更新

 训练到什么时候结束:


什么是BP神经网络

BP(BackPropagation) 算法是神经网络深度学习中最重要的算法之一,是一种按照误 差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一 。了 解BP算法可以让我们更理解神经网络深度学习模型训练的本质,属于内功修行的部 分。

BP算法的核心思想是:学习过程由信号的正向传播和误差的反向传播两个过程组 成。

正向传播:输入层的神经元负责接受外界发来的各种信息,并将信息传递给中间层 神经元,中间隐含层神经元负责将接收到的信息进行处理变换,根据需求处理信息, 实际应用中可将中间隐含层设置为一层或者多层隐含层结构,并通过最后一层的隐含 层将信息传递到输出层,这个过程就是BP神经网络的正向传播过程。

反向传播:当实际输出与理想输出之间的误差超过期望时,就需要进入误差的反向 传播过程。它首先从输出层开始,误差按照梯度下降的方法对各层权值进行修正,并 依次向隐含层、输入层传播。通过不断的信息正向传播和误差反向传播,各层权值会 不断进行调整,这就是神经网络的学习训练。当输出的误差减小到期望程度或者预先 设定的学习迭代次数时,训练结束,BP神经网络完成学习。

 隐藏层神经元的设置方法:

如果 BP 神经网络中输入层节点数为 m 个,输出层节点是为 n 个,则由下式式 可推出隐藏层节点数为 s 个。 其中 b 一般为 1-9 的整数。

 

BP神经网络的推导

 第一层是输入层

两个神经元i1,i2,和截距项b1

第二层是隐含层

两个 神经元h1,h2和截距项(偏置系数)b2

隐含层作用

用于控制神经元被激活的容易程度

 第三层是输出层

输出o1,o2

 权重

每条线上标的wi是层与层之间连接的权重

 sigmoid函数

激活函数我们默认为 sigmoid函数。

 

 假设验证sigmoid函数

假设现在有5个数字,分别是a=0.8,b=1.5,c=1.2,d=1.9,e=10,它们的关系是a<c<b<d<e。e特别大,有可能是样本采集失误出现的错误数据,经过sigmoid变 换,可以看到这几个数据的差异变小了,但大小关系仍然是a<c<b<d<e。

 根据函 数图像可知,sigmoid函数可以在保持数据大小关系不变的情况下使特别大或特 别小的数变得普通,这一特性很适用于分类问题和bp网络数据的处理。

损失函数采用均方差

 以数据推导,现在对他们赋上初值,如下图

 输入层--->隐含层: 计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

                                                                 其余同理可求得

隐含层--->输出层: 计算输出层神经元o1和o2的值:

 这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远。所以我们要对误差进行反向传 播,更新权值,重新计算输出

反向计算

计算总误差 总误差

 但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:

 隐含层---->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用 整体误差对w5求偏导求出:(链式法则)

 下面的图可以更直观的看清楚误差是怎样反向传播的:

 

 

 

对 sigmoid函数函数对x求导 

 

 

 这样我们就计算出整体误差E(total)对w5的偏导值。 最后我们来更新w5的值

 n为学习率,设置为0.5,可以调整更新的步伐,合适的学习率能够使目标函 数在合适的时间内收敛到局部最小值。学习率设置太小,结果收敛非常缓 慢;学习率设置太大,结果在最优值附近徘徊,难以收敛,一般选取为0.01-0.8

 同理更新其他参数

 隐含层---->隐含层的权值更新

在上文计算总误差对 w5的偏导时,是从out(o1)---->net(o1)---->w5,但是在隐含层之间的权值更新 时,是out(h1)---->net(h1)---->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的 误差,所以这个地方两个都要计算。

 

 

 

 同理,计算出:

 两者相加得到总值:

 

 最后,更新w1的权值:

 

                                         同理,额可更新w2,w3,w4的权值

这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在 这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代 10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734] (原输入为 [0.01,0.99]),证明效果还是不错的。

 训练到什么时候结束:

设置最大迭代次数,比如使用数据集迭代100次后停止训练

计算训练集在网络上的预测准确率,达到一定门限值后停止训练

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值