Day1 数组part01
一、数组理论基础
1、一维数组
-
数组是存放在连续内存空间上的相同类型数据的集合。
- 数组的下标都从0开始;
- 数组内存空间的地址是连续的;
-
我们在删除或者增添元素的时候,要移动其他元素的地址。
-
数组的元素是不能删的,只能覆盖。
2、二维数组
以C++为例,在C++中二维数组是连续分布的。
二、二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
由于题目强调是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件。
使用二分法时,主要是有while(left < right)
还是 while(left <= right)
,到底是right = middle
呢,还是要right = middle - 1
,这几个点不好把握。
写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。
1、暴力法
直接通过循环来查找,当找到target的时候,return索引即可;若没找到,则return -1;
class Solution {
public:
int search(vector<int>& nums, int target) {
int length = nums.size();
for (int i = 0; i < length; i++) {
if (nums[i] == target) {
return i;
}
}
return -1;
}
};
2、二分查找——左闭右闭。
第一种写法,我们定义 target 是在一个在左闭右闭的区间里,**也就是[left, right] **,left和right是左边界和右边界的索引。
- 此时对应的循环条件应为
while (left <= right)
,终止条件为left == right + 1
,即 [right + 1, right],此时区间为空,故循环终止,程序返回 -1 即可; - 此时由于右边界是闭合的,所以
right = nums.size() - 1
; - 当
nums[middle] > target
,此时target在left~middle之间,由于是左闭右闭,所以更新right为right = middle -1
,因为middle已经搜索过了,所以我们只需在middle左侧的闭区间内进行搜索; - 当
target > nums[mdiddle]
时(即 target 在右区间时),此时target在middle~right之间,更新left为left = middle + 1
对应的搜索区间为 [middle + 1, right],解释同上;
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
while(left <= right){
int middle = (left + right) / 2;
if(nums[middle] > target){
right = middle -1;
}
else if(nums[middle] < target){
left = middle + 1;
}
else return middle;
}
return -1;
}
};
3、二分查找——左闭右开
第二种写法,我们定义 target 是在一个在左闭右开的区间里,**也就是[left, right) **,left和right是左边界和右边界的索引。
- 此时对应的循环条件为
while (left < right)
,因为left=right在这个区间里面是不成立的,当left == right
,即循环终止; - 由于右边界是开的,所以
right = nums.size()
; - 当
nums[middle] > target
,此时target在left~middle之间,由于是左闭右开,所以更新right为right = middle
,虽然middle已经搜索过了,但是右边是开区间,所以不需要-1; - 当
target > nums[mdiddle]
时(即 target 在右区间时),此时target在middle~right之间,更新left为left = middle + 1
对应的搜索区间为 [middle + 1, right],因为左边界是闭区间,所以在middle已经搜索过的情况下,需要从middle的下一个开始搜索。
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size();
while(left < right){
int middle = (left + right) / 2;
if(nums[middle] > target){
right = middle;
}
else if(nums[middle] < target){
left = middle + 1;
}
else return middle;
}
return -1;
}
};
三、移除元素
给你一个数组nums
和一个值val
,你需要 原地 移除所有数值等于val
的元素,并返回移除后数组的新长度。不要使用额外的数组空间。你必须仅使用 O(1) 额外空间并原地修改输入数组。元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。
1、暴力法
通过双循环来解决
- 第一个循环遍历数组,当该索引下的值等于val时,进入第二个循环;
- 从该索引的后一个值开始遍历,逐一向前覆盖;
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int length = nums.size();
for(int i = 0; i < length; i++){
if(nums[i] == val){
for(int j = i + 1; j < length; j++){
nums[j - 1] = nums[j];
}
i--;// 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
length--;
}
}
return length;
}
};
- 关于i–
2、双指针法
双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
- 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
- 慢指针:指向新数组下标的位置
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slow = 0;
// fast 指针遇到等于 val 的元素跳过
// 等待 slow 指针将这些元素覆盖
// 即达到删去 val 的目的
for(int fast = 0; fast < nums.size(); fast++){
if(nums[fast] != val){
// 先覆盖,再对 slow 自增,保证 nums[0...slow-1] 中不包含 val
nums[slow] = nums[fast];
slow++;
}
}
return slow;
}
};
四、总结
要看了视频讲解之后才能自己动手写,希望接下来能慢慢进步,争取做到不看讲解自己也能有些思路。