Day2 数组02

本文介绍了LeetCode中的四个问题:有序数组的平方要求按非递减顺序返回每个数字的平方;长度最小子数组寻找满足和大于等于目标值的最短连续子数组;使用滑动窗口法解决这两个问题;以及螺旋矩阵II生成顺时针排列的矩阵。作者分享了解题思路和代码实现。
摘要由CSDN通过智能技术生成

Day2 数组02

一、有序数组的平方

977. 有序数组的平方 - 力扣(LeetCode)

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1:

输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]

示例 2:

输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

1、暴力法

  • 先直接遍历数组,将数组里面的值变为平方;
  • 由于有负数的存在,所以要再次进行排序;
class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        //平方
        for(int i = 0; i < nums.size(); i++)
        {
            nums[i] = nums[i]*nums[i];
        }

        //冒泡排序(会超时)
        // for(int i = 0; i < nums.size() - 1; i++)
        // {
        //     for(int j = 0; j < nums.size() - 1; j++)
        //     {
        //         if(nums[j] > nums[j+1]){
        //             int temp = nums[j];
        //             nums[j] = nums[j+1];
        //             nums[j+1] = temp;
        //         }
        //     }
        // }

        //快排
        sort(nums.begin(), nums.end());
        return nums;
    }
};

2、双指针法

由于一个数组里面有正有负,但是平方过后,一定是最两边的值大于中间的值,所以可以使用双指针法

  • start指向起始位置,end指向终止位置;
  • 定义一个新数组result,和nums数组一样的大小,让k指向result数组终止位置;
  • 比较最末和最始的位置
    • 如果最始大于最末,则将最始的数值的平方添加到result数组的最末,此时end--,k--
    • 如果最末大于最始,则将最末的数值的平方添加到result数组的最末;此时start++,k--
class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        int k = nums.size() - 1;
        vector<int> result(nums.size(), 0);

        int start = 0;
        int end = nums.size() - 1;
        while(start <= end)
        {
            if(nums[start]*nums[start] < nums[end]*nums[end])
            {
                result[k] = nums[end]*nums[end];
                k--;
                end--;
            }
            else
            {
                result[k] = nums[start]*nums[start];
                k--;
                start++;
            }
        }
        return result;
    }
};

二、长度最小的子数组

209. 长度最小的子数组 - 力扣(LeetCode)

给定一个含有 n 个正整数的数组和一个正整数 target

找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度**。**如果不存在符合条件的子数组,返回 0

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

1、暴力法

  • 外层循环(i): 从数组的第一个元素开始,作为子序列的起始位置。

  • 内层循环(j): 从起始位置(i)开始,依次累加元素,直到子序列的和大于等于目标值 s

    • 如果满足条件,记录当前子序列的长度 subLength = j - i + 1,即起始位置到结束位置的距离加1,即子序列的长度。
    • 然后将当前长度与之前最短长度 result 比较,保留较小者。
    • 一旦找到了符合条件的子序列,就退出内层循环,因为我们只关心最短的子序列。
  • 外层循环每次都会从下一个位置开始,继续寻找下一个符合条件的子序列,直到遍历完整个数组。

  • 最终返回 result,如果 result 没有被更新过,说明没有符合条件的子序列,返回0。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX; // 最终的结果
        int sum = 0; // 子序列的数值之和
        int subLength = 0; // 子序列的长度
        for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
            sum = 0;
            for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
                sum += nums[j];
                if (sum >= s) { // 一旦发现子序列和超过了s,更新result
                    subLength = j - i + 1; // 取子序列的长度
                    result = result < subLength ? result : subLength;
                    break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
                }
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

2、滑动窗口法

滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果;是维护一个窗口,窗口内的元素满足某个条件,然后不断调整窗口的位置,以找到满足条件的最短窗口。

  • 开始遍历数组,不断将右边界的元素加入窗口,并维护 sum
  • sum 大于等于目标值 s 时,窗口内的元素满足条件,可以考虑缩小窗口
  • 缩小窗口的过程是不断将左边界的元素从窗口中移出,同时更新 sum,直到 sum 小于目标值 s
  • 在缩小窗口的过程中,记录每次窗口大小的变化,以便最后找到最短的满足条件的子数组。
  • 最终返回 minLength,如果 minLength 仍然是 INT_MAX,说明没有符合条件的子数组,返回0。
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int left = 0; // 窗口的左边界
        int sum = 0; // 窗口内元素的和
        int minLength = INT_MAX; // 最小子数组长度,初始化为一个很大的值

        for (int right = 0; right < nums.size(); ++right) {
            sum += nums[right]; // 将右边界元素加入窗口
          
            // 当窗口内元素的和大于等于目标值 s 时,可以考虑缩小窗口
            while (sum >= s) {
                minLength = min(minLength, right - left + 1); // 更新最小长度
                sum -= nums[left]; // 缩小窗口,左边界向右移动
                left++;
            }
        }

        // 如果 minLength 仍然是 INT_MAX,说明没有符合条件的子数组
        return (minLength == INT_MAX) ? 0 : minLength;
    }
};

三、螺旋矩阵Ⅱ

59. 螺旋矩阵 II - 力扣(LeetCode)

给你一个正整数 n ,生成一个包含 1n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix

示例 1:

img

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例 2:

输入:n = 1
输出:[[1]]
  • 首先创建一个大小为 n x n 的矩阵 matrix,并将所有元素初始化为0。
  • 定义四个变量 top, bottom, left, right 来表示当前螺旋矩阵的边界。它们的初始值分别是矩阵的上、下、左、右边界。
    • top 初始值为 0,表示矩阵的上边界在第 0 行。
    • bottom 初始值为 n - 1,表示矩阵的下边界在第 n - 1 行。
    • left 初始值为 0,表示矩阵的左边界在第 0 列。
    • right 初始值为 n - 1,表示矩阵的右边界在第 n - 1 列。
  • 使用 num 来表示当前要填充的数字,从1开始递增。
  • 进入一个循环,直到填充完所有的数字。在每一轮循环中,我们按照顺时针的顺序填充当前边界。
    • 首先从左到右填充上边界,然后从上到下填充右边界,接着从右到左填充下边界,最后从下到上填充左边界。
    • 在每次填充边界时,我们将 num 的值赋给矩阵中相应位置的元素,并将 num 递增。
    • 同时,我们也会相应地更新当前边界的位置,以准备填充下一个边界。
    • 最终,当 num 大于 n * n 时,表示所有数字都已经填充完毕,我们返回生成的螺旋矩阵。
class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> matrix(n, vector<int>(n, 0)); // 初始化一个 n x n 的矩阵,所有元素初始值为0
        int top = 0, bottom = n - 1, left = 0, right = n - 1; // 定义四个边界

        int num = 1; // 从1开始填充矩阵
        while (num <= n * n) {
            // 从左到右填充上边界
            for (int i = left; i <= right; ++i) {
                matrix[top][i] = num++;
            }
            ++top;

            // 从上到下填充右边界
            for (int i = top; i <= bottom; ++i) {
                matrix[i][right] = num++;
            }
            --right;

            // 从右到左填充下边界
            for (int i = right; i >= left; --i) {
                matrix[bottom][i] = num++;
            }
            --bottom;

            // 从下到上填充左边界
            for (int i = bottom; i >= top; --i) {
                matrix[i][left] = num++;
            }
            ++left;
        }

        return matrix;
    }
};

四、总结

后面两个题目,滑动窗口以及螺旋,我刚开始完全没有思路,必须要看完讲解之后才能下手,感觉越来越难了呜呜,希望下次可以做出来更多的题目,有更多的思路;还有,问了gpt很多问题,他真好,给出的解题方法甚至更简单易懂!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值