百度松果菁英班——机器学习实践三:图像直方图统计

飞桨AI Studio星河社区-人工智能学习与实训社区

🥪命令行建文件夹并下载安装相关包

!mkdir /home/aistudio/external-libraries
!pip install beautifulsoup4 -t /home/aistudio/external-libraries

🥪环境设置

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: 
​
import sys 
sys.path.append('/home/aistudio/external-libraries')

🌮灰度直方图补充知识

灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图。

统计直方图数据 首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理 BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图。但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31。。。240到255。可以将256个值分成16份,每份计算综合。每个分成的小组就是一个BIN(箱)。在opencv中使用histSize表示BINS。 DIMS: 数据的参数数目。当前例子当中,对收集到的数据只考虑灰度值,所以该值为1。 RANGE: 灰度值范围,通常是[0,256],也就是灰度所有的取值范围。 统计直方图同样有两种方法,使用opencv统计直方图,函数如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

🥪各种直方图的绘制

🥗1numpy调用hist绘制

import cv2
import numpy as np
from matplotlib import pyplot as plt
​
img = cv2.imread('data/nezha.jpeg',1)
# img_np = np.array(img) 
plt.hist(img.reshape([-1]),256,[0,256]);
plt.show()
  • 通过cv2.imread()函数读取了一张图像

  • 使用Matplotlib库的hist()函数绘制了该图像的灰度直方图

  • 在直方图中,横轴表示像素的灰度级别(从0到255),纵轴表示对应灰度级别的像素数量

  • 通过观察直方图,可以了解图像的亮度分布情况,以及是否存在过曝或欠曝的情况

  • plt.hist()函数的参数中,img.reshape([-1])将图像数组转换成一维数组,256表示直方图的箱数,[0,256]表示灰度级别的范围

🥗2cv2调用calcHist绘制

该代码与上个代码的区别只是绘制调用的函数不同

import cv2
# import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('data/nezha.jpeg',0)
histr = cv2.calcHist([img],[0],None,[256],[0,256]) #hist是一个shape为(256,1)的数组,表示0-255每个像素值对应的像素个数,下标即为相应的像素值
plt.plot(histr,color = 'b')
plt.xlim([0,256])
plt.show()

cv2.calcHist([images], [channels], mask, histSize, ranges[, hist[, accumulate ]])

  • imaes:输入的图像

  • channels:选择图像的通道

  • mask:掩膜,是一个大小和image一样的np数组,其中把需要处理的部分指定为1,不需要处理的部分指定为0,一般设置为None,表示处理整幅图像

  • histSize:使用多少个bin(柱子),一般为256

  • ranges:像素值的范围,一般为[0,255]表示0~255

🥗3cv2调用calcHist分别绘制红绿蓝三通道

import cv2
from matplotlib import pyplot as plt
img = cv2.imread('data/nezha.jpeg',1) 
color = ('b','g','r')
for i,col in enumerate(color):
    histr = cv2.calcHist([img],[i],None,[256],[0,256])
    #hist是一个shape为(256,1)的数组,表示0-255每个像素值对应的像素个数,下标即为相应的像素值
    plt.plot(histr,color = col)
    plt.xlim([0,256])
plt.show()

🥗4手动编写绘制(不调包)

import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
​
def main():
    img=cv2.imread('data/nezha.jpeg',0)
    #得到计算灰度直方图的值
    n = np.array(img)
    xy=xygray(img)   
​
    #画出灰度直方图
    x_range=range(256)
    plt.plot(x_range,xy,"r",linewidth=2,c='black')
    #设置坐标轴的范围
    y_maxValue=np.max(xy)
    plt.axis([0,255,0,y_maxValue])
    #设置坐标轴的标签
    plt.xlabel('gray Level')
    plt.ylabel("number of pixels")
    plt.show()
​
def xygray(img):
    #得到高和宽
    rows,cols=img.shape
    print(img.shape)
    #存储灰度直方图
    xy=np.zeros([256],np.uint64)
    for r in range(rows):
        for c in range(cols):
            xy[img[r][c]] += 1
    #返回一维ndarry
    print(xy.sum())
    return xy
​
main()

⭐点赞收藏不迷路~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值