寒假训练营 第二十节 数论基础(三)总结

筛质数

一、朴素筛法求素数

素数: 它的因子仅有1和其本身。
核心思想: 它一旦存在其他因子,那么说明这个数不是素数,那么我们将其倍数全部筛除,剩下的就是素数。

例如:1 2 3 4 5 6 7 8 9 10
先把所有数放进一个数组,然后从前往后看,把每一个数的倍数删掉,第一个数是2,就把所有2的倍数删掉,4,6,8,10;第二个数是3,就把所有3的倍数删掉,6,9;第二个数是4,就把所有4的倍数删掉,8;第二个数是5,就把所有5的倍数删掉,10;以此类推,这样筛完之后,所有剩下的数就是质数。

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
int cnt = 0 , n;
int primes[10010];
bool st[10010]; // false

void get_primes(int n){
	st[1] = true ;	// 特判 
	for(int i = 2 ;i <= n ; i++ ){
//		用一个数组来记录是否为素数,将不是素数的标记 
//		用一个数组来判断该数是否被标记 
		if(!st[i]) 
			primes[++cnt] = i;
		for(int j = i+i ;j <= n ; j+=i){
			st[j] = true ;
		}
	}
}

int main(){
//	进行倍数筛除的时候 1 和 其本身 没有必要 
//	一个合数必定能分解为素数的乘积 
	cin>> n;
	get_primes(n);
	for(int i = 1 ;i <= cnt ; i++ )
		cout<<primes[i]<<endl;
	return 0;
}
 

模板如下:

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

二、埃氏筛法求素数(埃拉托斯特尼筛法)

要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数剔除,剩下的就是素数。 即:只用质数去筛后面的数
给出要筛数值的范围n,找出以内的素数。先用2去筛,即把2留下,把2的倍数剔除掉;再用下一个质数,也就是3筛,把3留下,把3的倍数剔除掉;接下去用下一个质数5筛,把5留下,把5的倍数剔除掉;不断重复下去…。

例如:2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

  1. 标出序列中的第一个素数,也就是2,序列变成:
    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  2. 将序列中,划掉2的倍数,序列变成:
    2 3 5 7 9 11 13 15 17 19 21 23 25
  3. 如果这个序列中最大数小于最后一个标出的素数的平方,那么剩下的序列中所有的数都是素数,否则回到第一步。
  4. 因为25大于2的平方,我们返回第一步:
  5. 剩下的序列中第一个素数是3,将主序列中3的倍数划掉,主序列变成:
    2 3 5 7 11 13 17 19 23 25
  6. 我们得到的素数有:2,3
  7. 25仍然大于3的平方,所以我们还要返回第一步:
  8. 序列中第一个素数是5,同样将序列中5的倍数划掉,主序列成了:
    2 3 5 7 11 13 17 19 23
  9. 我们得到的素数有:2,3,5 。
  10. 因为23小于5的平方,跳出循环.

结论:2到25之间的素数是:2 3 5 7 11 13 17 19 23。

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
int cnt = 0 , n;
int primes[10010];
bool st[10010]; // false

void get_primes(int n){
	st[1] = true ;	// 特判 
	for(int i = 2 ;i <= n ; i++ ){
//		用一个数组来记录是否为素数,将不是素数的标记 
//		用一个数组来判断该数是否被标记 
		if(!st[i]) {	// 首先能进来的一定是素数 
			primes[++cnt] = i;
			for(int j = i+i ;j <= n ; j+=i)
				st[j] = true ;
		}
	}
}

int main(){
	cin>> n;
	get_primes(n);
	for(int i = 1 ;i <= cnt ; i++ )
		cout<<primes[i]<<endl;
	return 0;
}

三、线性筛法求素数(欧拉筛法)

核心: 一个合数仅会被其最小质因数筛掉(线性筛法中筛掉合数的唯一方法)

线性筛完美的解决了埃氏筛法出现的重复筛的这个问题
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 
	我们进行倍数筛除的时候 1 和 其本身 没有必要 
	一个合数必定能分解为素数的乘积 mod 取模 %
	算术基本定理 带余除法 取模的运算 同余的概念 
	12 = 2*2*3 =3*4
	216 = 2*3*4*9
	
	12 = 2*2*3 // 12是2的6倍
	12 = 3*2*2 // 12是3的4倍  (出现了重复 ——> 欧拉算法) 
	任意一个合数都能写成素数的乘积形式,那么肯定只用筛素数的倍数即可 
	
6 = 2 * 3 = 3 * 2
(这里的2就越界了——> 那么什么时候才不会越界呢???)
我们通过算术基本定理得知,每个合数必定都能写成素数的乘积形式,并且唯一。
比如 4 = 2 * 2 ,没有其它的写法,那么在筛时其只能被2筛。
比如 9 = 3 * 3 ,没有其它的写法,那么在筛时其只能被3筛。
我们在筛时,只需要筛到素数的平方次即可。

比如一个合数 n ,假设一个最小的素数 p1
n = p1 *q ; // 一个合数,一定能写成最小素数和一个数的乘积的形式
同时如果 q 为合数,那么 q = p2 * q1
这个时候的 p2 >= p1 , q1 < q ,因为我们规定了 p1 是 n 的最小素因数

	
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
int cnt = 0 , n;
int primes[10010];
bool st[10010]; // false

void get_primes(int n){
	st[1] = true ;	// 特判 
	for(int i = 2 ;i <= n ; i++ ){
		if(!st[i]) 
			primes[++cnt] = i;
		for(int j = 1 ;j <= cnt && i * primes[j] <= n ; j++){
			st[i * primes[j]] = 1 ;
			if(i % primes[j] == 0)
				break;
		}
	}
}

int main(){
	cin>> n;
	get_primes(n);
	for(int i = 1 ;i <= cnt ; i++ )
		cout<<primes[i]<<endl;
	return 0;
}
 

模板如下:

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}
1、题目详情:洛谷P3383 【模板】线性筛素数

本题已更新,从判断素数改为了查询第 k k k 小的素数
提示:如果你使用 cin 来读入,建议使用 std::ios::sync_with_stdio(0) 来加速。

#include<bits/stdc++.h>
#define endl '\n'

using namespace std; 
const int N = 1e8 + 10 ;

bool st[N]; // false
int primes[N],cnt = 0 , n , q , tmp ;


void get_primes(int n){
	st[1] = true ;	// 特判 
	for(int i = 2 ;i <= n ; i++ ){
		if(!st[i]) 
			primes[++cnt] = i;
		for(int j = 1 ;j <= cnt && i * primes[j] <= n ; j++){
			st[primes[j] * i] = true;
            if (!(i % primes[j])) break;
		}
	}
}

int main(){
	std::ios::sync_with_stdio(0);
	cin >> n >> q ;
	get_primes(n);
	for(int i = 1 ;i <= q ; i++ ){
		cin>>tmp;
		cout<<primes[tmp]<<endl;
	}
	return 0;
}

时间复杂度:

  1. 朴素筛法:O( n l o g n nlogn nlogn)
  2. 埃氏筛法:O( n l o g l o g n nloglogn nloglogn)
  3. 线性筛法:O( n n n)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值