寒假训练营 第二十一节 数论基础(四)总结

1、题目详情:洛谷P2043 质因子分解

N ! N! N! 进行质因子分解。

输入格式

输入数据仅有一行包含一个正整数 N N N N ≤ 10000 N \leq 10000 N10000

输出格式

输出数据包含若干行,每行两个正整数 p , a p,a p,a,中间用一个空格隔开。表示 N ! N! N! 包含 a a a 个质因子 p p p,要求按 p p p 的值从小到大输出。

样例输入
10
**样例输出 **
2 8
3 4
5 2
7 1
提示

10 ! = 3628800 = ( 2 8 ) × ( 3 4 ) × ( 5 2 ) × 7 10! = 3628800 = (2^8) \times (3^4) \times (5^2) \times 7 10!=3628800=(28)×(34)×(52)×7

#include<bits/stdc++.h>
using namespace std;
int a[10005]; // 存储个数 
int main(){
	int n;
	cin>>n;
	for(int i=2;i<=n;i++){ 
//	因为是质因子所以从 2 开始计算 
//	这里不用特意排除非素数的数
//	是因为从2开始就已经排除后面能被2整除的所有数了,以此类推.... 
		int b=i; // 定义一个变量来存储 i ,是为了防止 i 被除掉,从而导致for循环里面的范围变化 
		for(int j=2;j<=i;j++){
			while(b%j==0)	// 是否能被整除 如果能被整除则对应的数组个数++ 
				a[j]++,b/=j;
		} 
	}
	
	for(int i=1;i<=10000;i++)
		if(a[i]!=0)
			cout<< i << ' '<< a[i] << endl; 
} 

上课的代码如下:

#include <iostream>
#define endl '\n'
#include <map>
using namespace std;

int n;
map<int, int> mp;	 // 模板 
// map 相当于一个二维数组 
// 第一个 int 叫 关键字 ,第二个 int 叫 值 

void decompose(int x){
	//质因数分解
	for(int i = 2; i <= x/i; i ++){
		while(x % i == 0){
			x /= i;
			mp[i] ++;
		}
	} 
	if(x > 1) mp[x] ++;
}

int main()
{
	cin >> n;
	while(n) decompose(n --);
	for(auto prime : mp){
		cout << prime.first << " " << prime.second << endl;
	}
	
	return 0;
}
2、题目详情:洛谷P5736 【深基7.例2】质数筛

输入 n n n 个不大于 1 0 5 10^5 105 的正整数。要求全部储存在数组中,去除掉不是质数的数字,依次输出剩余的质数。

#include<bits/stdc++.h>
using namespace std;
int main(){
	int n,a[102];
	cin>>n;
	for(int i=0;i<n;i++)
	cin>>a[i];
	for(int i=0;i<n;i++){
		for(int j=2;j<a[i];j++) 
		if(a[i]%j==0){
			a[i]=0;
			break;
		}
		if(a[i]!=0&&a[i]!=1)
		cout<<a[i]<<' ';
	}
	return 0;
}

裴蜀定理(贝祖定理)

裴蜀定理 说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
它的一个重要推论是:a,b互质的充分必要条件是存在整数x,y使ax+by=1。

若a,b属于整数,且 gcd(a,b) = d ;
那么对于任意的x,y属于整数
ax + by 都一定是d的倍数
特别地,一定存在x,y属于z,使得 ax + by = d 成立

设 d | gcd(a,b) ,那么说明 d|a,d|b, 对于任意的x,y属于整数,都有 d|(ax + by)
例如:4x + 6y = 2==> 可以利用裴蜀定理来判断有无整数解
2x + 3y = 1 ; x = 1 , y = -1
4x + 6y = 3==> 可以说明该方程,没有整数解
 裴蜀定理: 一定存在x,y, 满足ax + by = gcd(a,b);

证明:
	设x0,y0属于z,ax + by 有一个最小整数为s
	那么ax0 + by0 = s;
	gcd(a,b) | a ;
	gcd(a,b) | ax0
	gcd(a,b) | by0
	那么就可以知道 gcd(a,b)|ax0 + by0 ==> gcd(a,b)|s...(1)
	要证明 s|gcd(a,b) ==> gcd(a,b) == s ;
	a = q*s + s;
	r = a - qs ;
	  = a - a*(ax0 + by0)
	  = a(1 - qx0) + b(-y0)
	  	 整数         整数
	r = ax + by;
	s = ax0 + by0 ⇒ 因为 s 是最小正整数,所以 r = 0 ;
	a = q * s ;
	s|a
	s|b
	s|a-b
	所以s|gcd(a,b) ... (2)
	s = gcd(a,b)
	
裴蜀定理: ax + by =  gcd(a,b);
裴蜀定理推广:ax + by =  gcd(a,b) * n;
n个整数间的裴蜀定理
设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d。
特别来说,如果a1...an存在任意两个数是互质的(不必满足两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=1。证法类似两个数的情况。
3、题目详情:洛谷P4549 【模板】裴蜀定理

给定一个包含 n n n 个元素的整数序列 A A A,记作 A 1 , A 2 , A 3 , . . . , A n A_1,A_2,A_3,...,A_n A1,A2,A3,...,An
求另一个包含 n n n 个元素的待定整数序列 X X X,记 S = ∑ i = 1 n A i × X i S=\sum\limits_{i=1}^nA_i\times X_i S=i=1nAi×Xi,使得 S > 0 S>0 S>0 S S S 尽可能的小。

#include <bits/stdc++.h>
using namespace std;

int gcd(int x, int y) {
    return y ? gcd(y, x%y) : x;
}

int main() {
	int n;
    cin>>n;
    int ans = 0, tmp;
    for(int i=1; i<=n; i++) {
        cin>>tmp;
        if(tmp < 0) 
        	tmp = -tmp;
        ans = gcd(ans, tmp);
    }
    cout<<ans;
    return 0;
}
4、题目详情:洛谷P8646 [蓝桥杯 2017 省 AB] 包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有 N N N 种蒸笼,其中第 i i i 种蒸笼恰好能放 A i A_i Ai 个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买 X X X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X X X 个包子。比如一共有 3 3 3 种蒸笼,分别能放 3 3 3 4 4 4 5 5 5 个包子。当顾客想买 11 11 11 个包子时,大叔就会选 2 2 2 3 3 3 个的再加 1 1 1 5 5 5 个的(也可能选出 1 1 1 3 3 3 个的再加 2 2 2 4 4 4 个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有 3 3 3 种蒸笼,分别能放 4 4 4 5 5 5 6 6 6 个包子。而顾客想买 7 7 7 个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。

#include <iostream>

using namespace std;

int n, s, w[10010], ans=0, dp[10010];

int gcd(int a, int b){
	return b==0 ? a : gcd(b, a % b);
}

int main()
{
	cin >> n;
	for(int i = 1; i <= n; i ++){
		cin >> w[i]; //重量,没有价值 完全背包
		s = gcd(s, w[i]); 
	}
	if(s != 1) cout << "INF";
	else{
		dp[0] = 1;
		for(int i = 1; i <= n; i ++){
			for(int j = w[i]; j <= 10000; j ++){
				dp[j] = max(dp[j], dp[j-w[i]]);
			}
		}
		for(int i = 0; i <= 10000; i ++)
			if(!dp[i]) ans ++;
		cout << ans;		
	}
	
	
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值