以下均为32位储存
一、整数在计算机中的储存:
整数分为正整数和负整数,但无论正负,都是以二进制进行储存。
首先负整数要从十进制转化为二进制,例如:
-5(十进制)——>10000000000000000000000000000101(二进制),这个其实就是数字5的原码。
二进制数其中开头的1是代表的是-5这个数是负数,然后再进行符号位不变的取反操作,即把除开头1之外的数0变成1,1变成0。
反码:11111111111111111111111111111010
然后反码再加1,就变成了补码:11111111111111111111111111111011
而计算机中存储的就是数字的补码!
正整数的储存就相对来说比较简单,正整数的原码、反码、补码相同。
例:5(十进制)
原码:00000000000000000000000000000101
反码:00000000000000000000000000000101
补码:00000000000000000000000000000101
二、浮点数在计算机中的储存:
试问5.5这个数字在计算机中是如何存储的呢?
5的二进制为 101(前面的0省略)
0.5的二进制为0.1 即1*2的-1次方
所以5.5的二进制为101.1
实际上,关于浮点数的储存有国际规定:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
例如刚才提到的5.5,用国际标准来表达的话就是(-1)^0*1.011*2^2
这里s=0,M=1.011,E=2 这里其实和十进制的科学计数法很相像,就不再赘述了。
所以对计算机来说,只需要储存s,M,E就行。
IEEE 754对有效数字M和指数E,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。
比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
以32位 浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。 至于指数E,情况就比较复杂。 首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们 知道,科学计数法中的E是可以出 现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数 是127;对于11位的E,这个中间 数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1 这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。
比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进 制表示形式为: 0 01111110 00000000000000000000000
E全为0 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E全为1 这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。