【蓝桥杯每日一题】4.8 公约数

本文介绍了如何使用C++解决一个关于寻找最大整数x,它是给定整数a和b的最大公约数g的所有约数中的一个,且满足l≤x≤r的问题。通过gcd函数计算最大公约数,利用约数分解和二分查找算法实现高效求解。
摘要由CSDN通过智能技术生成

题目来源:

4199. 公约数 - AcWing题库

问题描述:

​ 找到最大整数x,需满足下面两个条件

  • x x x a a a, b b b的公约数
  • l < = x < = r l<=x<=r l<=x<=r

思路:

  • 找到 a a a, b b b两个数的最大公约数 g c = g c d ( a , b ) gc=gcd(a,b) gc=gcd(a,b)
  • 将此最大公约数的所有约数存放在一个数组 g g g
  • 二分查找该数组 g g g,找到满足条件的值

AC Code:

//gcd+约数分解+二分查找
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+10; //x的约数不会超过2*sqrt(x)个

ll a,b,q,x,y;
ll g[N];
ll cnt=0;

int gcd(ll a,ll b)
{
	return b?gcd(b,a%b):a;
}

void div(ll x)
{
	for(ll i=1;i<=x/i;i++)
	{
		if(x%i==0)
		{
			g[cnt++]=i;
			if(i!=x/i) g[cnt++] = x/i; //相当于用遍历从1->x的时间 记录了x的所有约数
		}	
	}
	sort(g,g+cnt);
}
int main()
{
	scanf("%ld%ld",&a,&b);
	div(gcd(a,b));
	
	scanf("%ld",&q);
	while(q--)
	{
		scanf("%ld%ld",&x,&y);
		int l=-1,r=cnt;
		while(l+1<r)
		{
			int mid=(l+r)/2;
			if(g[mid]<=y) l=mid;
			else r=mid;
		}
		if(g[l]>=x) printf("%ld\n",g[l]);
		else printf("-1\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值