题目描述
上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和。
路径上的每一步只能从一个数走到下一层和它最近的左边的那个数或者右 边的那个数。此外,向左下走的次数与向右下走的次数相差不能超过 1。
输入描述
输入的第一行包含一个整数 N\ (1 \leq N \leq 100)N (1≤N≤100),表示三角形的行数。
下面的 NN 行给出数字三角形。数字三角形上的数都是 0 至 100 之间的整数。
输出描述
输出一个整数,表示答案。
输入输出样例
示例
输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出
27
运行限制
- 最大运行时间:1s
- 最大运行内存: 256M
需要注意的是,题目中所说的向左下走的次数与向右下走的次数相差不能超过 1的意思是:总次数相加不能超过1
#include<stdio.h>
#include <stdlib.h>
int max(int a,int b)//求最大值
{
return a>b?a:b;
}
int main(){
// arr用来表示原数组,dp用来表示和
int arr[200][200],dp[200][200];
int num;
scanf("%d",&num);
// 数组从[1][1]位置开始录入
for(int i=1;i<=num;i++){
for(int j=1;j<=i;j++){
scanf("%d",&arr[i][j]);
}
}
dp[1][1] = arr[1][1];
for(int i=2;i<=num;i++){// 从第二行开始遍历
for(int j=1;j<=i;j++){
// 每行的第一个数等于上一行的第一个数加上它本身
// 下面这一段最好拿笔画一下更容易理解思路
if(j==1){
dp[i][j] = dp[i-1][j] + arr[i][j];
}else if(i==j){
dp[i][j] = dp[i-1][j-1] + arr[i][j];
}else {
dp[i][j] = max(dp[i-1][j],dp[i-1][j-1]+dp[i][j])+arr[i][j];
}
}
}
// 和已经放到dp数组中了,接下来找规律
// 因为题目中给的条件,向左走和向右走的差不能大于1
// 所以奇数行最终一定会走到最后一行中间的数
// 偶数行一定走到最后一行中间的两个数字上,比一下大小决定输出哪个就行了
if(num%2==1){
printf("%d",dp[num][num/2+1]);
}else {
printf("%d",max(dp[num][num/2],dp[num][num/2+1]));
}
return 0;
}