mmdetection修改,改成自己的数据集(详细步骤一)。

本文介绍了如何在MMDetection框架下准备数据集,包括创建文件结构、配置文件和自定义数据集类,以及如何设置训练参数和执行训练过程。
摘要由CSDN通过智能技术生成

数据集准备,根目录创建dataset,在其中创建三个文件夹,分别为annotations、train、val。

其中train、val中放图片,annotations中放coco格式的标注文件。如下图:

  1. configs/_base_/datasets中创建一个新的py文件,可用coco_detection.py复制一个副本,改成自己的名字(数据集_detection.py 例如birds_detection.py)。修改data_root、dataset_type为数据集的path和数据集的类型。

2.configs/中创建自己的目录,其中放配置文件,内容为

3.mmdet/datasets中创建新的py文件,可用coco.py复制一个副本,改成自己的名字,其中将类名给成自己的,classes改成自己的类别,并且palette中的数量要与类别数量一致(palette就是每个类别对应的框)。如下图:

并在同级目录下的_init_.py文件中__all__注册BirdsDataset,如下图:

如果报错,如下图:

直接点击导入此名称。导入的是mmdet中的Birdsdataset,就是mmdet/datasets/birds中的Birdsdataset类名。

mmdet/evaluation/functional/class_names.py 中的加入下图的代码:

并在mmdet/evaluation/functional/_init_.py中的__all__注册birds_classes,如下图:

如果报错,处理方式跟第三步的注册一样,导入名称。

在第四步之前要在终端执行python setup.py install命令

4.在根目录创建work_dirs目录。命令行中输入:

python tools/train.py configs/birds/faster-rcnn_r50_fpn_1x_birds.py --work-dir work_dirs

并简单运行,生成配置文件,并会保存到work_dirs中。

5.work_dirs/faster-rcnn_r50_fpn_1x_birds.py。

可修改该文件中的下图中的interval,中断打印间隔

可修改该文件中的下图中的max_epochs

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值