数据集准备,根目录创建dataset,在其中创建三个文件夹,分别为annotations、train、val。
其中train、val中放图片,annotations中放coco格式的标注文件。如下图:
- configs/_base_/datasets中创建一个新的py文件,可用coco_detection.py复制一个副本,改成自己的名字(数据集_detection.py 例如birds_detection.py)。修改data_root、dataset_type为数据集的path和数据集的类型。
2.configs/中创建自己的目录,其中放配置文件,内容为
3.mmdet/datasets中创建新的py文件,可用coco.py复制一个副本,改成自己的名字,其中将类名给成自己的,classes改成自己的类别,并且palette中的数量要与类别数量一致(palette就是每个类别对应的框)。如下图:
并在同级目录下的_init_.py文件中__all__注册BirdsDataset,如下图:
如果报错,如下图:
直接点击导入此名称。导入的是mmdet中的Birdsdataset,就是mmdet/datasets/birds中的Birdsdataset类名。
mmdet/evaluation/functional/class_names.py 中的加入下图的代码:
并在mmdet/evaluation/functional/_init_.py中的__all__注册birds_classes,如下图:
如果报错,处理方式跟第三步的注册一样,导入名称。
在第四步之前要在终端执行python setup.py install命令
4.在根目录创建work_dirs目录。命令行中输入:
python tools/train.py configs/birds/faster-rcnn_r50_fpn_1x_birds.py --work-dir work_dirs
并简单运行,生成配置文件,并会保存到work_dirs中。
5.work_dirs/faster-rcnn_r50_fpn_1x_birds.py。
可修改该文件中的下图中的interval,中断打印间隔
可修改该文件中的下图中的max_epochs