更换数据集

以yolov5+deepsort的行人检测项目说一下怎么更换数据集。最终目标是要生成四个文件夹。一开始只有两个文件夹

1、标注文件。在终端输入lableme即可打开。尝试一下多分类(又是人、又是女人)

如果win的lable导出的文件是xml(voc),mac导出的是json。../母路径,./当前路径

找到json2yolo脚本,修改里面的

完成任务:完成训练集验证集的划分(训练完训练集再用测试集进行测试)。

JPEGImages里面放原始文件、Annotations里面放标注文件。ImageSets和labels里面各自设置了一个train和val文件夹,一开始都是空的,后面会存放train.txt和val.txt(2*2=4)。

tensorboard可视化指南:

1、在yolo.py中将该部分解除注释化。

2、在命令行输入如下指令:cd yolov5-master;cd runs; tensorboard --logdir=./exp34

更换数据集的方式:

用labelimg完成标注,会生成xml文件。然后运行voc_to_py文件。先看别人的数据集的格式(train+val、还是train+test);然后将voc_to_py的文件变成和源代码一样的格式即可。

有可能用imges(train+val),labels(train+val)。也有可能train(imges+labels),test(imges+labels)。

即嵌套关系有可能不同,但是images里面一定放的是jpg、labels里面放的一定是txt,这个是一定的。

改train.py

 再进去同样的路径,复制一个和原来的yaml相同路径下的yaml文件,修改不同的地方:class、train地址、test地址即可。运行train.py。完毕。

fps计算方法:YOLOV5的FPS计算问题_有温度的AI的博客-CSDN博客_yolov5的fps

打开val.py文件夹,fps是指用验证集来训练一个batchsize的图片的帧率。因此不用train.py和test.py。变更数据,bs=1,weights换为训练自己数据集得到的权重,开始验证。

更换yolov5的数据集,一般可以通过编写VOC.yaml文件来完成。这个文件可以定义数据集的相关参数,如类别数、训练和验证数据集的路径等。通过修改VOC.yaml文件中的相关参数,可以实现更换数据集的目的。 另外,yolov5有四种配置,分别是yolov5s、yolov5m、yolov5l和yolov5x。每种配置都有不同的特性,例如yolov5x的效果较好,但训练时间较长且对显存需求较高。你可以根据自己的需求选择适合的配置。 在使用yolov5时,你可以选择不同的预训练模型来训练数据集。本项目中使用的是官方提供的yolov5m.pt,还有yolov5l.pt、yolov5s.pt和yolov5x.pt可供选择。你可以根据具体情况来更换预训练模型。 更换数据集的具体步骤如下: 1. 下载需要的预训练模型。 2. 将下载的预训练模型放入weights文件夹中。 3. 编写VOC.yaml文件,定义数据集的相关参数,如类别数、训练和验证数据集的路径等。 4. 运行yolov5的训练代码,指定VOC.yaml文件作为配置文件进行训练。 通过以上步骤,你就可以更换yolov5的数据集了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【深度学习】YOLOv5使用自己VOC数据集](https://blog.csdn.net/u010398722/article/details/126492623)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [YOLOv5如何训练自己的数据集](https://blog.csdn.net/qq_42475191/article/details/128120399)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [基于yolov5的安全帽佩戴检测](https://download.csdn.net/download/xixixixixixixi21/85240380)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值