题目
小蓝有一个超大的仓库,可以摆放很多货物。
现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝
规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、
宽、高。
小蓝希望所有的货物最终摆成一个大的立方体。即在长、宽、高的方向上
分别堆 L、W、H 的货物,满足 n = L × W × H。
给定 n,请问有多少种堆放货物的方案满足要求。
例如,当 n = 4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、2 × 2 × 1、4 × 1 × 1。
请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种方案?
分析:这道题其实是求n所有因数的所有组合的方式有多少种
我用了一种比较本的办法
public class problem03 {
public static void main(String[] args) {
long n=20L;
int count=0;
for(long x=1L;x<=n;x++){
for(long y=1L;y<=n;y++){
for(long z=1L;z<=n;z++){
if(x*y*z==n)count++;
System.out.println(count);
}
}
}
System.out.println(count);
}
}
用三层for循环,把所有的情况都跑出来,但是我发现因为数目太大了,电脑跑了很久都跑不出一个结果。后来我就在网上搜了一些网友的答案,是这样的
public class problem03 {
private static final int max = 1010;
private static long[] a = new long[max];
public static void main(String[] args) {
long n = 2021041820210418L;
int len = 0;
//找出该数的因子
for(long i=1;i*i <= n;i++){
if(n%i == 0){
a[len++] = i;
if(i != n/i){
a[len++] = n/i;
}
}
}
long cnt = 0;
for(int i = 0;i < len;i++){
for(int j = 0;j < len;j++){
for (int k = 0; k < len; k++) {
if(a[i] * a[j] * a[k] == n){
cnt++;
}
}
}
}
System.out.println(cnt);
}
}
最终答案:2430
这个代码的思路是:先找出n的因数,然后用一个足够大的数组来存储这些因数,最后遍历数组中的值来找到三个数相乘等于n的情况。
这个代码中有一段是不太好理解的,就是找因子的那一段。我一开始不太理解,为什么for循环的条件是i*i<=n,n自己本身不也是n的因数吗?那为什么条件到i<=根号n(等价于i*i<=n)就停止了呢,这样怎么能取到自己本身呢?我在这里困扰了很久,后来去问了老师,这才明白。
for循环的条件是i<根号n没错,接着往下看,如果n%i==0,也就是n能整除i,也就是i为n的因数,这是将i赋值给数组,因数就被保存到数组中。思路到这里很清晰,接着进行下一步,如果i!=n/i(这里的前提是i为因数),也就是排除i为n的平方根的情况,以防数组中多一个相同值,将n/i的值赋值到数组中。这里就解开了我们之前的疑问。我们既然可以找出n的一个因数,就可以通过n/i找出另一个因数。例如,当i=1时,那么此时n/i的值便是n本身。我们可以将把n想象为一个数轴,那么n的平方根就相当于n数轴的一个中点,我们通过n%i可以拿到数组前半段的值,就可以利用n/i拿到数组后半段的值。这样做有利于节省电脑资源。
我做了一次尝试,如果把寻找因子的代码改成以下代码
for(long i=1;i<= n;i++){
if(n%i == 0){
a[len++] = i;
}
}
结果跑了很久都没有跑出来结果。