二叉树的基本操作(创建,先中后序遍历,计算叶子节点个数及输出,计算树高度)

二叉树的基本操作

内容

此文章用c语言实现了二叉树的基本操作,包括先序创建二叉树,先序、中序、后序遍历二叉树,计算叶子节点的个数以及输出叶子节点,求二叉树的深度

1.先序创建二叉树

结构体定义二叉树的左孩子右孩子,以及创建一个char型data字符用来输入二叉树的节点

typedef struct node{
	struct node* lchild;//左孩子
	struct node* rchild;//右孩子
	char data;//输入字符
}BiTreeNode,*BiTree;

2.先序遍历二叉树

顺序为根左右,先输出根节点,再递归遍历左右子树
中序后序只需要按左根右,左右根的顺序写就好了,只是调换了一下代码顺序

void preTraverse(BiTree T)
{
	if (T)
	{
		cout << T->data;
		preTraverse(T->lchild);
		preTraverse(T->rchild);
	}
}

3.计算叶子节点个数

计算个数,函数类型为整形int,首先考虑空节点,就返回0,然后考虑叶子节点,即没有左右子树的节点,返回1,再然后递归计算左右子树的叶子节点个数

int countleavenumber(BiTree T) {
	if (T == NULL)
		return 0;
	else if (T->lchild == NULL && T->rchild == NULL)//是叶子节点就返回1
		return 1;
	else
		return(countleavenumber(T->lchild) + countleavenumber(T->rchild));
	//左子树节点个数+右子树节点个数
}

4.输出叶子节点

思路很简单,在递归算法中增加一个if语句的筛选条件:左右子树书否为空。

void leaveTraverse(BiTree T) {
	if (T)
	{
		if (!T->lchild && !T->rchild)//遍历算法中增加左右子树是否为空的条件
			cout << T->data;
		leaveTraverse(T->lchild);
		leaveTraverse(T->rchild);
	}
}

5.求二叉树的深度

二叉树深度为左右子树的最大高度加1

//求二叉树的深度
int getheight(BiTree T) {
	int lheight;
	int rheight;
	int MaxH;
	if (T)
	{
		lheight = getheight(T->lchild);//求左子树高度
		rheight = getheight(T->rchild);//求右子树高度
		MaxH = (lheight > rheight) ? lheight : rheight;//求左右子树的最大高度
		return (MaxH + 1);
	}
	else
		return 0;//空树返回0
}

完整代码实现如下:

#include <iostream>
#include<stdio.h>
using namespace std;
//定义节点结构体
typedef struct node{
	struct node* lchild;//左孩子
	struct node* rchild;//右孩子
	char data;//输入字符
}BiTreeNode,*BiTree;
//先序创建一个二叉树
void createBiTree(BiTree &T) {//便于节点的更改故使用引用
	char c;
	cin >> c;
	if (c == '#')
		T = NULL;
	else {
		T = new BiTreeNode;
		T->data = c;
		createBiTree( T->lchild );
		createBiTree(T->rchild);
	}
}
//先序遍历二叉树
void preTraverse(BiTree T)
{
	if (T)
	{
		cout << T->data;
		preTraverse(T->lchild);
		preTraverse(T->rchild);
	}
}
//中序遍历二叉树
void inTraverse(BiTree T)
{
	if (T)
	{
		inTraverse(T->lchild);
		cout << T->data;
		inTraverse(T->rchild);
	}
}
//后序遍历二叉树
void postTraverse(BiTree T)
{
	if (T)
	{
		postTraverse(T->lchild);
		postTraverse(T->rchild);
		cout << T->data;
	}
}
//计算叶子节点个数
int countleavenumber(BiTree T) {
	if (T == NULL)
		return 0;
	else if (T->lchild == NULL && T->rchild == NULL)//是叶子节点就返回1
		return 1;
	else
		return(countleavenumber(T->lchild) + countleavenumber(T->rchild));
	//左子树节点个数+右子树节点个数
}
//输出叶子节点
void leaveTraverse(BiTree T) {
	if (T)
	{
		if (!T->lchild && !T->rchild)//遍历算法中增加左右子树是否为空的条件
			cout << T->data;
		leaveTraverse(T->lchild);
		leaveTraverse(T->rchild);
	}
}
//求二叉树的深度
int getheight(BiTree T) {
	int lheight;
	int rheight;
	int MaxH;
	if (T)
	{
		lheight = getheight(T->lchild);//求左子树高度
		rheight = getheight(T->rchild);//求右子树高度
		MaxH = (lheight > rheight) ? lheight : rheight;//求左右子树的最大高度
		return (MaxH + 1);
	}
	else
		return 0;
}
int main()
{
	BiTree T;//声明一个二叉树
	//先序建立一个二叉树
	createBiTree(T);
	cout << "二叉树创建完成" << endl;
	cout << "先序遍历二叉树为" << endl;
	preTraverse(T);
	cout << endl;
	cout << "中序遍历二叉树为" << endl;
	inTraverse(T);
	cout << endl;
	cout << "后序遍历二叉树为" << endl;
	postTraverse(T);
	cout << endl;
	cout << "叶子节点个数为:" << countleavenumber(T) << endl;
	cout << "叶子结点为: "<< endl;
	leaveTraverse(T);
	cout << endl;
	cout << "二叉树的深度为:   " << getheight(T) << endl;
	return 0;


}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值