近世代数(丘维声)

目录

前言

近世代数复习辅助笔记。

一、明确定义

基本概念:

  • 划分:如果集合S是一它的一些非空子集的并集,其中两两集合不相交那么将他们叫做集合S的一个划分。
    *对于所有等价类组成的并集是S的一个划分。
  • 二元关系:S是非空集合,我们将SXS的一个非空子集W叫做S上的一个二元关系。如果a,b属于集合W则记作aWb,称a与b有W关系。
  • 等价关系:若定义在集合S上的二元关系具有以下性质:
    • a~a,对于任意的a属于集合S(反身性)
    • 若 a ~ b 则 b~a(对称性)
    • 若a ~ b ,b~c则a ~c(传递性 )

那么称~是S上的一个等价关系。

  • 等价类:以a为代表,S中与a具有等价关系的所有元素元素组成的就叫做a的等价类。所有等价类是一个划分。
  • 商集:S上由所有等价类组成的集合叫做S对于关系~的商集,即S/ ~。
  • 零元、负元、单位元(看书P9)。
  • 二元代数运算:是指从SXS到集合S的一个映射。

环及相关定义

  • :一个非空集合R、定义两个代数运算+和*,满足下列6条性质:
    • 加法交换
    • 加法结合
    • 存在零元
    • 任意的元素a属于集合S都存在负元-a.
    • 乘法结合
    • 乘法分配

那么R是一个环。

  • 环的举例

    • Z 整数环
    • Z m {Z_m} Zm 模m剩余环
    • 2Z 偶数环
    • Mn(K)数域K上的的全矩阵环
    • 环R满足乘法交换律则R为交换环
  • 逆元:设R具有单位元e的环,对于a属于R,若存在b属于R使得ab=ba=e;
    那么称a是一个可逆元,b成为a的逆元。

  • 零因子:首先在环R中0a=a0=0,而对于a属于R,若存在c属于R,(c!=0)使得ac=0或ca=0则称a是一个左零因子或右零因子统称零因子

    • 设R是有单位元的环,则R的零因子不是可逆元。

环同构映射:P17

域的定义

  • :设F是一个有单位元的交换环,如果F中的每个非零元都是可逆元,则称F是一个域。
  • 数域:若域中所有元素都属于复数集。
  • Zm当m为合数时,Zm不是域
  • Zm中a拔是可逆元当且仅当a与m互质
  • 域的特征:P19

群的定义

下一节深入讨论

提及重点

欧拉函数

ϕ ( m ) = ∣ Z m ∗ ∣ { \phi(m)=|Z_m^*|} ϕ(m)=Zm
m=p,p为素数:
ϕ ( p ) = ∣ p − 1 ∣ { \phi(p)=|p-1|} ϕ(p)=p1∣
对于 p r { p^r} pr来说:
ϕ ( p r ) = p ( r − 1 ) ( p − 1 ) { \phi(p^r)=p^{(r-1)}(p-1)} ϕ(pr)=p(r1)(p1)

整数环证明欧拉函数:

明天来补。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值