密码学数学基础:近世代数

近世代数

1群

2环与理想

定义2.1: 一个集合R称为一个环,指R有一个加法运算+,和一个乘法运算 ⋅ \cdot 满足
1)(R,+)是一个交换群
2)乘法运算满足结合律,即(R, ⋅ \cdot )是半群
3)加法乘法满足分配律

定义2.2
1)一个环称为有单位元的,指他有乘法单位元1
2)交换环,即乘法运算是交换的
3)整环,一个交换的有单位元的环,1≠0且对任意a≠0,b≠0 ⇒ ab 不等于0 ; 即整环是一个无零因子的有单位元的交换环
4)除环,所有非零元在乘法运算下构成一个群
5)交换的除环为域,非交换的除环为体
零因子:a≠0,b≠0,但ab=0
除环性质:
除环没有零因子,因为若a≠0,ab=0,由a存在逆元⇒ a − ^- ab=b=0

定义2.2总结:对于环,加法已有很好的特性,而乘法只要求半群,因此其他特殊的环都是对乘法有特殊的要求

(R, ⋅ \cdot 结合律单位元交换律无零因子非零元有逆元
有单位元的环(幺环) ✓ \checkmark ✓ \checkmark
交换环 ✓ \checkmark ✓ \checkmark
整环 ✓ \checkmark ✓ \checkmark ✓ \checkmark ✓ \checkmark
除环 ✓ \checkmark ✓ \checkmark ✓ \checkmark ✓ \checkmark
✓ \checkmark ✓ \checkmark ✓ \checkmark ✓ \checkmark ✓ \checkmark

定理2.1:有限整环是域。(只需要证明任意非零元有逆元)

定义2.3:子环,即子集S在R的两个运算下封闭且形成一个环

定义2.4:理想,即I是R的子环且对a∈I,b∈R,有ab,ba∈I
。也就是说小的环的元素与大的环的元素运算,结果是在小的环里!
平凡理想:零理想或整个环本身;非平凡理想:其他

定义2.5:主理想,若R是交换环,I为R的理想,若存在a∈R使得 I=(a),
其中(a)称为由a生成的理想,即对交换环R,包含a的最小理想(a)={ra+na|r∈R,n∈Z}。特别地,如果R包含单位元,则(a)={ra|r∈R}

定义2.6:主理想整环,设R是整环,如果R的每一个理想都是主理想,则称R是主理想整环。

3域

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值