1. 01背包
1.1 题目
有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。
第 ii 件物品的体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000输入样例
4 5 1 2 2 4 3 4 4 5
输出样例:
8
1.2 二维下的解法
通读题目,这道题应该考察动态规划算法,原因在于是求最优解即最大价值。
那么,我们从动态规划出发,剖析本题:
- 状态方程
最优解是在背包容量为j的情况下装进一些特定物品的最大价值。我们不清楚要装哪些物品,所以dp数组的一个维度一定是物品的选取,但我们又不能随意选取物品,因为背包是有限的,所以我们又要考虑背包容量这个维度,最后才能给出最优解。
也就是说,dp数组应该包含两个维度,一个是物品的选取,一个是背包容量。所以定义:
dp[i][j]表示有前i个物品且在背包容量为j时的背包的最大价值
- 初始化
对于边界来说,如果背包容量为0,那么最优解一定是0;如果有0个物品,那么最优解也一定是0;dp数组其余的地方也是0。也就是说,dp数组初始化为0。
- 遍历顺序
正序逆序皆可。
下面具体看一下dp数组的用法 。
当前背包容量不够(j < v[i]),没得选,因此前 ii个物品最优解即为前 i−1个物品最解
- f[i][j] = f[i - 1][j]
当前背包容量够,可以选,因此需要决策选与不选第 i 个物品:
- 选:f[i][j] = f[i - 1][j - v[i]] + w[i]
- 不选:f[i][j] = f[i - 1][j]
- 我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
#include<stdio.h>
#define N 1001
int v[N]; // 体积
int w[N]; // 价值
int dp[N][N]; // f[i][j], j体积下前i个物品的最大价值
int max(int a,int b)
{
return a>=b?a:b;
}
int main()
{
int n, m;
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++)
scanf("%d %d",&v[i],&w[i]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
if(j < v[i])
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
}
printf("%d",dp[n][m]);
return 0;
}
1.3一维下的解法
二维解法的物品选取的这个维度可以转化为对物品数据的不断读取,也就把dp数组的维度从二维降到了一维。
- 状态方程
dp[j]代表在已有的物品下且背包容量为j的背包最大价值
- 初始化
初始化为0。
- 遍历顺序
如果遍历为顺序的话,根据dp数组的含义,遍历到前i个物品时,前i-1个物品的某个物品可能被选多次。
例如,找背包容量为10的最优解。如果第一个物品容量为1,遍历到dp[10]的时候该物品装进了背包;现在第二个物品可以装了,遍历到dp[10]的时候,此时dp[10]=1,明显还可以装第一个物品。也就是说,dp[10]很可能将第1个物品用了两次,而题目说只能用一次。
如果是逆序的话就不会出现这种情况。
#include<stdio.h>
#define N 1001
int max(int a,int b)
{
return a>=b?a:b;
}
int main()
{
int n,m,dp[N]={0};
scanf("%d %d",&n,&m);
for(int i = 1; i <= n; i++) {
int v, w;
scanf("%d %d",&v,&w);
for(int j = m; j >= v; j--)
dp[j] = max(dp[j], dp[j - v] + w);
}
printf("%d",dp[m]);
}
2. 完全背包
01背包是物品只能被选一次,而完全背包下物品可以被选无限次。实际上二者只是存在对dp数组遍历顺序的差别,前者是逆序,后者是顺序。
2.1 题目
有 NN 种物品和一个容量是 VV 的背包,每种物品都有无限件可用。
第 ii 种物品的体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000输入样例
4 5 1 2 2 4 3 4 4 5
输出样例:
10
2.2 题解
#include<stdio.h>
#define N 1001
int max(int a,int b)
{
return a>=b?a:b;
}
int main()
{
int n,m,dp[N]={0};
scanf("%d %d",&n,&m);
for(int i = 1; i <= n; i++) {
int v, w;
scanf("%d %d",&v,&w);
for(int j = v; j <= m; j++)
dp[j] = max(dp[j], dp[j - v] + w);
}
printf("%d",dp[m]);
}
3. 多重背包
3.1 题目
有 NN 种物品和一个容量是 VV 的背包。
第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000<N,V≤100
0<vi,wi,si≤1000<vi,wi,si≤100输入样例
4 5 1 2 3 2 4 1 3 4 3 4 5 2
输出样例:
10
3.2 题解
虽然每个物品的数量都不单一,但我们只需把几个相同的物品看成一个整体再用01背包处理。
#include<stdio.h>
#define N 101
int max(int a,int b)
{
return a>=b?a:b;
}
int main()
{
int n,m;
int dp[N]={0};
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
int u,w,s;
scanf("%d %d %d",&u,&w,&s);
for(int j=m;j>=u;j--)
{
for(int k=1;k<=s&&j>=k*u;k++)
{
dp[j] = max(dp[j],dp[j-k*u]+k*w);
}
}
}
printf("%d",dp[m]);
}
4. 分组背包
4.1 题目
有 NN 组物品和一个容量是 VV 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vijvij,价值是 wijwij,其中 ii 是组号,jj 是组内编号。求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 NN 组数据:
- 每组数据第一行有一个整数 SiSi,表示第 ii 个物品组的物品数量;
- 每组数据接下来有 SiSi 行,每行有两个整数 vij,wijvij,wij,用空格隔开,分别表示第 ii 个物品组的第 jj 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000<N,V≤100
0<Si≤1000<Si≤100
0<vij,wij≤1000<vij,wij≤100输入样例
3 5 2 1 2 2 4 1 3 4 1 4 5
输出样例:
8
4.2 题解
由于在每一组都最多选一个,那么对于一组而言可以用01背包处理,进而得到最优解。
#include<stdio.h>
#define N 110
int n, V;
int v[N], w[N];
int f[N];
int max(int a,int b)
{
return a>=b?a:b;
}
int main()
{
scanf("%d%d",&n,&V);
while(n --)
{
int s;
scanf("%d",&s);
for(int i = 0; i < s; i ++) scanf("%d%d",&v[i],&w[i]);
for(int i = V; i >= 0; i --)
for(int j = 0; j < s; j ++)
if(i >= v[j]) f[i] = max(f[i], f[i - v[j]] + w[j]);
}
printf("%d",f[V]);
return 0;
}
5. 总结
- 从不同的物品拿,每个物品最多拿一次,是01背包
- 从不同的物品拿,每个物品可拿无限次,是完全背包
- 从不同的物品拿,每个物品数量不同,是多重背包
- 从每组中最多拿一个物品,是分组背包