【AcWing】0-1背包+完全背包+多重背包+分组背包(C语言)

1. 01背包

1.1 题目

有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。

第 ii 件物品的体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

1.2 二维下的解法

通读题目,这道题应该考察动态规划算法,原因在于是求最优解即最大价值。

那么,我们从动态规划出发,剖析本题:

  • 状态方程

最优解是在背包容量为j的情况下装进一些特定物品的最大价值。我们不清楚要装哪些物品,所以dp数组的一个维度一定是物品的选取,但我们又不能随意选取物品,因为背包是有限的,所以我们又要考虑背包容量这个维度,最后才能给出最优解。

也就是说,dp数组应该包含两个维度,一个是物品的选取,一个是背包容量。所以定义:

dp[i][j]表示有前i个物品且在背包容量为j时的背包的最大价值

  • 初始化

对于边界来说,如果背包容量为0,那么最优解一定是0;如果有0个物品,那么最优解也一定是0;dp数组其余的地方也是0。也就是说,dp数组初始化为0

  • 遍历顺序

正序逆序皆可。

下面具体看一下dp数组的用法 。

当前背包容量不够(j < v[i]),没得选,因此前 ii个物品最优解即为前 i−1个物品最解 

  •  f[i][j] = f[i - 1][j]

当前背包容量够,可以选,因此需要决策选与不选第 i 个物品:

  • 选:f[i][j] = f[i - 1][j - v[i]] + w[i]
  • 不选:f[i][j] = f[i - 1][j] 
  • 我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
#include<stdio.h>
#define N 1001


int v[N];    // 体积
int w[N];    // 价值 
int dp[N][N];  // f[i][j], j体积下前i个物品的最大价值 

int max(int a,int b)
{
    return a>=b?a:b;
}

int main() 
{
    int n, m;   
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= n; i++) 
        scanf("%d %d",&v[i],&w[i]);

    for(int i = 1; i <= n; i++) 
        for(int j = 1; j <= m; j++)
        {
            if(j < v[i]) 
                dp[i][j] = dp[i - 1][j];
            else    
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
        }           

    printf("%d",dp[n][m]);

    return 0;
}

1.3一维下的解法

二维解法的物品选取的这个维度可以转化为对物品数据的不断读取,也就把dp数组的维度从二维降到了一维。

  • 状态方程

dp[j]代表在已有的物品下且背包容量为j的背包最大价值

  • 初始化

初始化为0。

  • 遍历顺序

如果遍历为顺序的话,根据dp数组的含义,遍历到前i个物品时,前i-1个物品的某个物品可能被选多次。

例如,找背包容量为10的最优解。如果第一个物品容量为1,遍历到dp[10]的时候该物品装进了背包;现在第二个物品可以装了,遍历到dp[10]的时候,此时dp[10]=1,明显还可以装第一个物品。也就是说,dp[10]很可能将第1个物品用了两次,而题目说只能用一次。

如果是逆序的话就不会出现这种情况。

#include<stdio.h>
#define N 1001
int max(int a,int b)
{
    return a>=b?a:b;
}

int main()
{
    int n,m,dp[N]={0};
    scanf("%d %d",&n,&m);
    for(int i = 1; i <= n; i++) {
        int v, w;
        scanf("%d %d",&v,&w);     
        for(int j = m; j >= v; j--)
            dp[j] = max(dp[j], dp[j - v] + w);
    }
    printf("%d",dp[m]);
}

 

2. 完全背包

01背包是物品只能被选一次,而完全背包下物品可以被选无限次。实际上二者只是存在对dp数组遍历顺序的差别,前者是逆序,后者是顺序。

2.1 题目

有 NN 种物品和一个容量是 VV 的背包,每种物品都有无限件可用。

第 ii 种物品的体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

2.2 题解

#include<stdio.h>
#define N 1001
int max(int a,int b)
{
    return a>=b?a:b;
}
 
int main()
{
    int n,m,dp[N]={0};
    scanf("%d %d",&n,&m);
    for(int i = 1; i <= n; i++) {
        int v, w;
        scanf("%d %d",&v,&w);     
        for(int j = v; j <= m; j++)
            dp[j] = max(dp[j], dp[j - v] + w);
    }
    printf("%d",dp[m]);
}

3. 多重背包 

3.1 题目

有 NN 种物品和一个容量是 VV 的背包。

第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000<N,V≤100
0<vi,wi,si≤1000<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例

10

3.2 题解 

虽然每个物品的数量都不单一,但我们只需把几个相同的物品看成一个整体再用01背包处理。

#include<stdio.h>
#define N 101

int max(int a,int b)
{
    return a>=b?a:b;
}

int main()
{
    int n,m;
    int dp[N]={0};
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        int u,w,s;
        scanf("%d %d %d",&u,&w,&s);
        for(int j=m;j>=u;j--)
        {
            for(int k=1;k<=s&&j>=k*u;k++)
            {
                    dp[j] = max(dp[j],dp[j-k*u]+k*w);
            }
        }
    }
    printf("%d",dp[m]);
}

4. 分组背包

4.1 题目

有 NN 组物品和一个容量是 VV 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vijvij,价值是 wijwij,其中 ii 是组号,jj 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V,N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 NN 组数据:

  • 每组数据第一行有一个整数 SiSi,表示第 ii 个物品组的物品数量;
  • 每组数据接下来有 SiSi 行,每行有两个整数 vij,wijvij,wij,用空格隔开,分别表示第 ii 个物品组的第 jj 个物品的体积和价值;

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000<N,V≤100
0<Si≤1000<Si≤100
0<vij,wij≤1000<vij,wij≤100

输入样例

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例:

8

4.2 题解

由于在每一组都最多选一个,那么对于一组而言可以用01背包处理,进而得到最优解。

#include<stdio.h>
#define N 110

int n, V;
int v[N], w[N];
int f[N];

int max(int a,int b)
{
    return a>=b?a:b;
}

int main()
{
    scanf("%d%d",&n,&V);

    while(n --)
    {
        int s;
        scanf("%d",&s);
        for(int i = 0; i < s; i ++) scanf("%d%d",&v[i],&w[i]);
        for(int i = V; i >= 0; i --)
            for(int  j = 0; j < s; j ++)
                if(i >= v[j]) f[i] = max(f[i], f[i - v[j]] + w[j]);
    }

    printf("%d",f[V]);

    return 0;
}

5. 总结

  • 从不同的物品拿,每个物品最多拿一次,是01背包
  • 从不同的物品拿,每个物品可拿无限次,是完全背包
  • 从不同的物品拿,每个物品数量不同,是多重背包
  • 从每组中最多拿一个物品,是分组背包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ོ栖落

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值