给定一个二叉树的 根节点 root
,请找出该二叉树的 最底层 最左边 节点的值。
假设二叉树中至少有一个节点。
思路1:使用迭代发,从右到左遍历二叉树,不断迭代结果值,遍历结束之后返回结果值即可
class Solution {
public int findBottomLeftValue(TreeNode root) {
//使用 迭代法进行便利
int result=0;
Queue<TreeNode> queue=new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
//记录每一层节点个数
int size=queue.size();
while(size>0){
TreeNode node=queue.poll();
if(node.right!=null) queue.offer(node.right);
if(node.left!=null) queue.offer(node.left);
result=node.val;
size--;
}
}
return result;
}
}
思路2:使用递归
1,没有返回值,传入参数为根节点,以及deepmax用来记录二叉树的最大深度,在递归过程中不断更迭。定义全局变量保存最后的value。
2,确认遍历顺序为前序遍历,从根节点到叶子节点一层层的找,如果当前为叶子节点,并且当前深度大于最大深度deepmax,我们就将此时叶子节点对应的值交给value,同时更新deepmax最大深度。
3,单层递归逻辑,对非空左子树递归,对非空右子树递归,但是由于我们隐藏了回溯逻辑,所以,当下次递归参数传值的时候,需要手动的将深度加一。
至此,已成艺术。
// 递归法
class Solution {
private int Deep = -1;
private int value = 0;
public int findBottomLeftValue(TreeNode root) {
value = root.val;
findLeftValue(root,0);
return value;
}
private void findLeftValue (TreeNode root,int deep) {
if (root == null) return;
if (root.left == null && root.right == null) {
if (deep > Deep) {
value = root.val;
Deep = deep;
}
}
if (root.left != null) findLeftValue(root.left,deep + 1);
if (root.right != null) findLeftValue(root.right,deep + 1);
}
}
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
思路:使用前序进行遍历二叉树,在遍历到当前节点时对目标值减去当前节点值,如果当前遍历到叶子节点,并且目标值为0说明有路径符合,直接返回true。反之返回false,之后执行单层递归逻辑,对非空左子树以及右子树继续遍历返回正确值,最后都不满足返回false。
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root==null) return false;
targetSum-=root.val;
if(root.left==null&&root.right==null&&targetSum==0){
return true;
}
if(root.left==null&&root.right==null&&targetSum!=0){
return false;
}
if(root.left!=null){
boolean flag=hasPathSum(root.left,targetSum);
if(flag) return true;
}
if(root.right!=null){
boolean flag=hasPathSum(root.right,targetSum);
if(flag) return true;
}
return false;
}
}
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
思路,使用递归,定义两个集合一个存储最终结果,一个存储符合的路径
1,无返回值,传入根节点以及目标值
2,采用前序遍历,将根节点首先加入路径当中,然后将tar做减法,判断当前是否是叶子节点并且tar是否等于0,如果满足,说明是一条符合的路径,将其加入结果集之中,但是注意,不能直接将path加入结果集当中,因为后续需要使用path进行回溯,所以我们拷贝一个path加入即可。
3,遍历左子树和右子树,遍历完之后回溯。即节点向上返回一个,继续找寻新的路径。
class Solution {
LinkedList<List<Integer>> result=new LinkedList<>();
LinkedList<Integer> path=new LinkedList<>();
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
pathSums(root,targetSum);
return result;
}
void pathSums(TreeNode root,int tar){
if(root==null) return;
path.add(root.val);
tar-=root.val;
if(tar==0 && root.left==null && root.right==null){
//将路径进行拷贝之后 加入结果集,
//路径本身不进入,方便 后续进行回溯
result.add(new LinkedList<Integer>(path));
}
pathSums(root.left,tar);
pathSums(root.right,tar);
//回溯
path.removeLast();
}
}
106.从后续和中序构建二叉树
惭愧,没写出来
By 三条直线围墙