当你觉得自己的电脑不够好,很落后,就不能学python,不能学习深度学习项目时,你可以尝试一下kaggle这个平台,它不仅提供了
- 丰富的学习资源:Kaggle提供了大量的数据集、教程、课程和论坛讨论,帮助用户学习数据分析、机器学习和深度学习等领域的知识和技能.
- 实践机会:通过参与竞赛和项目,用户可以将理论知识应用于实际问题中,提高解决复杂问题的能力.
- 多样化的数据集:Kaggle拥有来自不同行业和领域的数据集,涵盖了从金融、医疗到自然语言处理等多个领域,为用户提供了广泛的实践场景.
而且还是数据科学工具和平台
- 集成的开发环境:Kaggle提供了集成的开发环境,包括Notebook功能,用户可以直接在平台上编写和运行代码,无需配置本地开发环境.
- GPU和TPU支持:Kaggle提供了免费的GPU和TPU资源,用户可以在平台上进行大规模的机器学习模型训练和计算,节省时间和成本.
- 数据存储和版本控制:Kaggle支持数据存储和版本控制功能,用户可以方便地管理和更新数据集和代码,确保项目的持续性和可追溯性.
今天我们就来学习一下怎么在kaggle上运行自己的代码,以及对应的数据集的载入。在这个平台上目前我知道的还只能是以notebook的形式运行自己的代码。其他的功能还希望有大佬告知。
当然下面这个代码运行的需要时需要处理文件,或者图片的代码,如果你不需要处理数据集,只运行代码,那么就可以直接创建notebook。
首先点击Datasets下的(+New dataset)得到下面这个图片
然后点击browse Files就可以上传自己需要处理的数据集,需要给项目命名才可以点击creat。
这里插句题外话他的环境是notebook形式的,要区分python的(.py后缀)和notebook文件的(.ipynb后缀)两者不可兼容。
然后我们新建一个notebook窗口,然后点击左上角的file得到以下的窗口
然后点击add input就可以导入文件的路径。从而使用自己的文件。
希望大家都能学会。