Description
大于1的正整数n可以分解为:n=x1*x2*…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6*2;
12=4*3;
12=3*4;
12=3*2*2;
12=2*6;
12=2*3*2;
12=2*2*3。
对于给定的正整数n,计算n共有多少种不同的分解式。
Input
输入数据只有一行,有1个正整数n (1≤n≤2000000000)。
Output
将计算出的不同的分解式数输出。
Samples
Sample #1
Input
12
Output
8
#include <bits/stdc++.h>
using namespace std;
map<int, int> a;
long long f(int n) {
if (n == 1) return 1;
if (a[n]) return a[n];//如果 a[n] 已经有缓存的结果,则直接返回 a[n]
long long cnt = 1;
for (int i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {//例如 16=4*4
cnt+=f(i);
if(i!=n/i){//例如 16=2*8
cnt+=f(n/i);
}
}
}
a[n]=cnt;
return cnt;
}
int main() {
int n;
cin >> n;
cout << f(n);
return 0;
}