整数因子分解问题

Description

大于1的正整数n可以分解为:n=x1*x2*…*xm。例如,当n=12 时,共有8 种不同的分解式:
12=12;
12=6*2;
12=4*3;
12=3*4;
12=3*2*2;
12=2*6;
12=2*3*2;
12=2*2*3。
对于给定的正整数n,计算n共有多少种不同的分解式。

Input

输入数据只有一行,有1个正整数n (1≤n≤2000000000)。

Output

将计算出的不同的分解式数输出。

Samples

Sample #1
Input 

12

Output 
8
#include <bits/stdc++.h>
using namespace std;
map<int, int> a;
long long f(int n) {
	if (n == 1) return 1;
	if (a[n]) return a[n];//如果 a[n] 已经有缓存的结果,则直接返回 a[n]
	long long cnt = 1;
	for (int i = 2; i <= sqrt(n); i++) {
		if (n % i == 0) {//例如 16=4*4
			cnt+=f(i);
			if(i!=n/i){//例如 16=2*8
				cnt+=f(n/i);
			}
		}
	}
	a[n]=cnt;
	return cnt;
}
int main() {
	int n;
	cin >> n;
	cout << f(n);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值