(第六届泰迪杯数据挖掘挑战赛特等奖案例解析)
一、案例背景与核心挑战
1.1 行业痛点与数据特性
传统电力负荷监测需为每台设备安装传感器,存在成本高、部署复杂的问题。非侵入式负荷检测(Non-Intrusive Load Monitoring, NILM)通过在电网入口处安装单一传感器,分析总电流或总功率信号,分解出各设备的用电行为。其技术难点包括:
-
数据复杂性:总功率信号是多设备叠加的非线性混合信号,需分离出单一设备特征。
-
类别不平衡:设备启停事件稀疏,低功耗设备(如手机充电器)特征易被高功耗设备(如空调)掩盖。
-
实时性要求:需在秒级延迟内完成负荷分解,支持动态用电管理。
1.2 技术目标与量化指标
任务 | 技术指标 | 实现难点 |
---|---|---|
单一设备特征提取 | 提取有功/无功功率、电流谐波等4类特征,误差<5% | 噪声干扰下的特征稳定性 |
多负荷状态识别 | 准确率>90%,误检率<3% | 事件检测与多设备并发处理 |
实时用电量估计 | 误差率<8%,计算延迟<1秒 | 算法轻量化与边缘计算部署 |
二、技术路线与核心步骤(原子级拆解)
2.1 数据预处理与特征工程
2.1.1 信号降噪与清洗
-
小波降噪:采用Daubechies小波基(db4)进行5层分解,分层处理高频系数:
-
D1层(最高频):硬阈值处理(保留>0.2×max的系数),捕捉设备启停瞬态特征8。
-
D2-D3层:软阈值处理(收缩小系数)&#
-