自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(158)
  • 收藏
  • 关注

原创 泰迪杯特等奖案例深度解析:基于时空图卷积网络的城市排水系统水位精准重建与异常检测系统(技术详解)

针对城市排水系统(UDN)监测数据稀疏(覆盖率<1.5%)、异常响应延迟等问题,本文提出基于多模态时空图卷积网络(ST-GCN)的智能运维方案。通过融合水位、降雨、管网拓扑等多源数据,结合Chebyshev谱图卷积和空洞时间卷积,实现未观测节点水位重建(MAE<0.05m)和实时异常检测(F1-score>85%)。关键技术包括:PTPv2硬件同步(<1μs误差)、动态时间规整优化(计算效率提升300%)、TensorRT边缘部署(推理延迟<50ms)。

2025-06-05 09:54:54 529

原创 泰迪杯特等奖案例深度解析:基于量子启发优化与多尺度时空建模的港口物流智能调度系统

全球贸易量年增长5.2%的背景下,港口物流效率成为供应链核心瓶颈。需融合AIS船舶轨迹(1Hz)、RTG传感器(10Hz)、天气预警(API)等异构数据。1000+岸桥/场桥/集卡的实时调度涉及解空间达 $10^{2500}$ 量级。突发天气(风速>15m/s)导致设备停机,需在30秒内重建调度方案。创新调度算法保障<10ms端到端延迟。自适应决策模型降低响应延迟84%Unity3D实现毫米级运动仿真。实现2000+变量级实时优化。数学表达:多目标优化问题。碰撞预测准确率99.2%

2025-06-04 19:58:25 995

原创 泰迪杯特等奖案例深度解析:基于多模态点云融合与域自适应的电力设备缺陷检测系统设计

本文提出了一种多模态融合的电力设备缺陷检测方法,针对传统检测面临的数据同步、小样本学习和边缘计算三大挑战。通过PTPv2协议实现激光点云与红外热成像的硬件级同步,采用动态图卷积网络(DGCNN)和跨模态注意力机制处理异构数据,结合Focal Loss和MMD域对齐损失解决样本不均衡问题。在Jetson AGX Orin边缘设备上,通过TensorRT优化实现30ms内完成推理,模型精度(mAP)提升至92%以上,跨设备泛化性能提升67%。工程部署采用MQTT分布式架构,支持联邦学习实现模型持续优化。

2025-05-28 20:22:25 611

原创 泰迪杯特等奖案例深度解析:基于联邦时空图卷积网络的跨区域碳排放协同预测与优化系统

本文提出一种基于联邦时空图卷积网络(Fed-STGCN)的工业园区碳排放智能监测方案。针对碳排放数据孤岛、时空动态建模复杂和边缘计算资源受限等痛点,系统构建了多模态感知网络与工业级数据库,采用动态加权联邦学习实现跨园区隐私保护协同建模,创新设计了分层图卷积架构捕获设备拓扑关系与突变事件特征。实验表明,该方案在5类工业园区的碳排放估算误差<3%,异常检测响应延迟<3秒,模型体积压缩88%。实际部署中实现年减碳150万吨,碳交易成本降低7800万元,为碳中和目标提供了可落地的智能化解决方案。

2025-05-27 20:12:50 975

原创 泰迪杯特等奖案例深度解析:基于多模态时空图神经网络的工业园区碳排放实时监测与优化系统

本文提出一种基于多模态时空图神经网络(MM-STGNN)的工业园区碳排放智能监测方案。针对工业场景中多源数据融合困难、动态过程建模复杂和边缘计算资源受限三大挑战,构建了包含红外热像、气体浓度、电力参数的多模态感知网络,通过时空数据对齐与物理约束增强特征工程。

2025-05-27 17:19:25 779

原创 泰迪杯特等奖案例深度解析:基于联邦学习与时空Transformer的农业气象灾害跨区域协同预警系统

本文提出一种基于联邦时空Transformer的农业气象灾害预警系统,旨在解决传统预警模型数据孤岛、时空依赖性不足及边缘计算资源受限等问题。通过多源数据融合、联邦学习架构和轻量化部署方案,该系统实现了跨区域协同预警,模型准确率达94.8%,干旱预警提前量提升至14天,减少农业损失约8.7亿元/年。

2025-05-27 15:30:33 918

原创 泰迪杯特等奖案例深度解析:基于三维点云与深度学习的复杂零件装配质量检测系统设计

需同步处理三维点云(密度>10万点/零件)、RGB图像(500万像素)、扭矩传感器数据(采样率1kHz),多源数据时间对齐误差需<2ms。高精度装配场景下缺陷样本稀缺(良品率>99.9%),单个缺陷类别样本量<50,导致模型过拟合,跨产线泛化F1-score下降超25%。激光扫描仪:Creaform HandySCAN 3D,精度±0.025mm,采样率480,000点/秒,用于获取高密度点云。扭矩传感器:HBM T40B,量程0-50Nm,精度±0.1%,监测螺栓拧紧过程。

2025-05-26 20:12:35 708

原创 泰迪杯特等奖案例深度解析:基于层次化难样本挖掘与域自适应的工业过程故障诊断系统

本文提出了一种基于改进深度信念网络(SmdaNet)的工业故障诊断解决方案。针对工业场景中难样本识别(如偏差仅5%的早期故障)、跨工况泛化性差(设备升级后准确率骤降28%)和实时性要求(<100ms延迟)等核心痛点,通过层次化难样本挖掘(HSM)实现边界案例识别率提升15.2%,结合域自适应技术使模型在新传感器场景下F1-score仅下降2.3%。

2025-05-26 16:08:57 960

原创 泰迪杯特等奖案例深度解析:基于多模态文本挖掘的智慧政务留言分析与热点预警系统设计

每条留言需3分钟分类(含阅读、标注、分发),日均处理量仅2000条。使用PaddleOCR提取图片文字(平均准确率92.3%):30%的答复使用固定话术(如"已转交相关部门处理")

2025-05-19 09:45:29 948

原创 泰迪杯特等奖案例深度解析:基于多模态融合与小样本学习的工业产品表面缺陷智能检测系统

第九届泰迪杯数据挖掘挑战赛特等奖案例聚焦于工业质检领域,针对3C电子和汽车零部件等高端制造中的表面缺陷检测问题,提出了一套创新的多模态小样本学习框架。该案例通过融合2D高光图像和3D点云数据,解决了小样本学习、多模态数据融合、实时性要求和复杂背景干扰等核心挑战。技术方案包括双流特征提取网络、小样本学习策略、模型压缩与加速等,最终实现了缺陷检测准确率超过95%、新缺陷类型识别率超过85%、检测速度小于0.5秒/件的目标。实际应用中,该方案显著降低了漏检率,年节约质量成本超1500万元。

2025-05-16 20:30:07 884

原创 泰迪杯特等奖案例深度解析:基于多级二值化与CNN回归的车牌识别系统设计

本文详细拆解了第八届泰迪杯数据挖掘挑战赛特等奖案例,聚焦于智慧交通与无感支付场景中的车牌识别技术。传统车牌识别系统在复杂光照、污损车牌、多角度倾斜等场景下存在显著缺陷,导致支付延迟和运营效率下降。案例通过多源数据融合、改进MSER算法、CNN回归精定位与字符分割等核心技术,构建了多场景训练集,并采用多阶段训练策略和模型压缩与加速技术,最终实现了高准确率和低延迟的车牌识别系统。实验结果表明,该方案在识别准确率、平均延迟和模型大小等方面均优于现有方法,显著提升了智慧油站的支付成功率和处理效率。

2025-05-16 20:10:34 872

原创 泰迪杯特等奖案例深度解析:基于MSER-CNN的商品图片字符检测与识别系统设计

第四届泰迪杯数据挖掘挑战赛特等奖案例聚焦于电商平台商品图片中的促销文字检测与识别,旨在解决传统人工审核效率低、漏检率高的问题。案例通过构建高质量训练集,采用MSER-CNN融合架构进行字符检测与识别,并优化模型训练与部署策略。关键技术包括多尺度极值区域提取、轻量化CRNN字符识别网络、两阶段训练策略及INT8量化与加速部署。系统在边缘端与云端协同工作,显著提升了检测与识别的准确率和响应速度。

2025-05-16 19:51:09 1103

原创 泰迪杯特等奖案例学习资料:基于卷积神经网络与集成学习的网络问政平台留言文本挖掘与分析

本案例通过层次化模型设计与集成学习优化,实现了政务文本处理效能的革命性提升。层次化注意力机制:结合业务规则动态调整注意力权重,提升分类准确性。动态模型集成:根据实时性能调整基模型权重,适应数据分布变化。轻量化工程架构:通过知识蒸馏与分布式计算,满足高并发实时处理需求。行业启示技术赋能政务:AI技术可有效解决公共服务中的效率与公平性难题。持续迭代优化:需建立数据闭环系统,持续收集反馈数据优化模型。

2025-05-06 14:53:13 738

原创 泰迪杯特等奖案例学习资料:基于多模态时空图卷积网络的工业安全预警系统设计

每个设备或监控点作为一个节点,属性包含设备类型、坐标、历史状态。

2025-05-04 00:18:04 976

原创 泰迪杯特等奖案例学习资料:基于时空图卷积网络的城市排水系统水位精准重建与异常检测

拓扑增强的时空建模:融合管网连接度先验知识,提升稀疏数据下的重建精度。边缘智能架构:通过PMTS策略与轻量化部署,实现毫秒级响应。跨域迁移能力:在MVD数据集上迁移误差仅8.7%,显著优于传统水力模型(23.5%)。四、应用价值与拓展方向。

2025-05-03 23:34:48 937 1

原创 泰迪杯特等奖案例学习资料:基于时空图卷积网络的结构健康监测数据异常识别系统

(第十四届泰迪杯数据挖掘挑战赛A题特等奖案例解析)在桥梁、大坝、超高层建筑等基础设施的结构健康监测(SHM)中,传感器网络(如加速度计、应变计、倾角仪)持续采集多维数据以评估结构安全性。传统方法面临以下挑战:异常模式复杂:传感器故障:如温漂(温度变化导致零点偏移)、电磁干扰(EMI)、信号线接触不良等,占异常事件的60%。结构损伤:如混凝土裂缝扩展、钢索疲劳断裂等,其早期信号微弱(如0.01mm级位移变化),易被噪声掩盖。数据时空关联性:传播延迟:桥梁某点振动传递至相邻传感器需数毫秒,需精准对齐时空特征。模

2025-05-02 18:28:43 643

原创 泰迪杯特等奖案例学习资料:基于时空图卷积网络的物流车辆路径动态优化系统

(第十五届泰迪杯数据挖掘挑战赛B题特等奖案例解析)在智慧物流领域,车辆路径规划(Vehicle Routing Problem, VRP)直接影响运输成本与时效性。传统路径优化面临以下难题:动态扰动频繁:实时路况变化:交通事故、天气突变(如暴雨、大雾)导致路段通行时间波动,静态规划方案失效。例如,某城市早高峰期间,30%的主干道平均车速下降40%。订单动态插入:电商平台“即时达”服务要求系统在5分钟内响应新订单,传统重调度耗时超30分钟。多目标冲突:成本与时效矛盾:最短路径可能绕开高速公路(节省里程但增加时

2025-05-02 17:32:16 797

原创 泰迪杯特等奖案例学习资料:基于边缘计算与多模态融合的温室传感器故障自诊断系统设计

2024年3月,系统检测到某温室湿度传感器漂移(上报值稳定在65%,实际值波动于58-72%),触发告警并切换至备用传感器,避免过度灌溉导致的根系腐烂。传感器类型多样:模拟信号(4-20mA电流环)、数字信号(I2C、SPI)、图像流(RGB-D相机)。采样频率差异大:温度(0.1Hz)、光照(1Hz)、CO₂(10Hz)、图像(30fps)。环境数据:温度、湿度、光照、CO₂浓度,采样频率0.1-10Hz,总计1.2亿条记录。图像数据:RGB-D图像,分辨率1280×720,30fps,总计15万帧。

2025-05-02 16:27:36 1147

原创 泰迪杯特等奖案例学习资料:基于CLIP模型微调与知识蒸馏的多模态图文检索系统设计

在社交媒体(如微博、抖音)、电商平台(如淘宝、京东)及数字图书馆等场景中,用户对图像与文本的跨模态检索需求日益增长。:图像的低级视觉特征(如颜色、纹理)与文本的高级语义难以直接对齐,例如“红色连衣裙”可能对应多种视觉形态(长款、短款、蕾丝材质)。:图像数据维度高(如224×224×3),文本数据为离散符号序列,两者特征空间差异显著。:随机裁剪(保留率≥80%)、水平翻转(p=0.5)、旋转(-15°~15°)。:梯度裁剪(max_norm=1.0),降低学习率(降至1e-5)。

2025-05-02 16:02:44 812

原创 泰迪杯特等奖案例学习资料:基于多模态特征融合的图像文本检索系统设计

异构特征动态对齐:通过跨模态注意力机制实现图像与文本的细粒度语义匹配。轻量化联合训练:结合知识蒸馏与量化技术,在边缘设备上实现高效检索。数据增强策略:采用文本替换(如“红色→玫红”)与图像旋转(±15°)提升模型鲁棒性。四、应用价值与拓展方向电商平台:提升“以图搜货”与“文本推荐商品”的精准度,促进转化率增长。社交媒体:增强内容推荐系统的多模态理解能力,优化用户体验。扩展方向支持视频-文本跨模态检索,动态捕捉时序特征。结合知识图谱,实现语义推理与上下文感知检索。五、实践指南与代码示例。

2025-05-02 15:51:04 735

原创 泰迪杯特等奖案例学习资料:基于多模态数据融合与边缘计算的工业设备健康监测与预测性维护系统

多模态时空融合架构:通过跨模态注意力机制实现振动、温度、电流数据的动态加权融合。边缘-云协同推理:本地完成实时故障检测,云端执行RUL预测与模型迭代更新。小样本元学习:基于Prototypical Networks解决稀有故障模式识别难题。四、应用价值与拓展方向工业4.0:应用于数控机床、风电设备、轨道交通等场景,实现预测性维护。能源管理:结合设备健康状态优化能耗策略,降低单位产值能耗15%。扩展应用迁移至医疗设备(如MRI机组)状态监测。结合数字孪生技术,构建虚拟调试与故障模拟平台。

2025-04-30 14:31:04 1328

原创 泰迪杯特等奖案例学习资料:基于多模态融合与边缘计算的智能温室环境调控系统

多模态时空特征融合:结合环境时序数据与冠层空间结构,突破单一传感器局限性37。混合动作空间强化学习:离散-连续动作联合优化,平衡调控精度与设备损耗。边缘智能动态卸载:基于网络状态的实时任务分配算法,保证低延迟与高可靠性9。四、应用价值与拓展方向农业智能化:适用于连栋温室、植物工厂等场景,实现番茄、黄瓜等高附加值作物精准管理。能源互联网:与光伏发电系统联动,在电价谷段预储能,进一步降低能耗成本4。扩展应用集成害虫识别模块(YOLOv5迁移),实现环境-虫害联合调控8。

2025-04-30 14:20:10 893

原创 泰迪杯实战案例超深度解析:非侵入式电力负荷检测与分解系统设计

非侵入式负荷检测(Non-Intrusive Load Monitoring, NILM)通过在电网入口处安装单一传感器,分析总电流或总功率信号,分解出各设备的用电行为。:分离数据采集(1秒)、预处理(120ms)、推理(350ms)、后处理(30ms),总延迟<500ms8。:关键参数设置(初始温度1000,冷却速率0.95,马尔可夫链长度100),避免局部最优8。:设备启停事件稀疏,低功耗设备(如手机充电器)特征易被高功耗设备(如空调)掩盖。:0-1规划与决策树协同推理,解决多设备并发问题8。

2025-04-30 10:22:06 769

原创 泰迪杯实战案例超深度解析:特殊医学用途配方食品数据分析与智能推荐系统设计

PDF中的表格常因分页导致结构断裂。:利用PDFMiner分析页面布局,识别文本块和图像块的位置坐标。:构建双语词典映射(如“Protein”→“蛋白质”)。:本案例完整实现涉及15000+行代码,已开源至。基于图神经网络:在知识图谱上执行节点分类。的Scattergl替代Scatter。:相比REST API提升3倍吞吐量。:PDF解析+知识图谱构建+动态对齐。验证逻辑:检查每行单元格数一致性。:规则引擎+协同过滤+大模型增强。:微服务架构+实时监控+性能优化。后处理阶段根据坐标重建表格结构。

2025-04-28 10:36:05 862

原创 泰迪杯实战案例超深度解析:基于YOLOv5的农田害虫图像识别系统设计

使用初始模型在无标注图像上推理,保留置信度0.1~0.3的预测框作为困难负样本。:高频害虫(如褐飞虱)样本量>200,稀有类(如稻水象甲)仅1-5张。:利用大规模数据集(ImageNet)的通用特征,避免小样本过拟合。计算标注框长宽比异常值(昆虫通常1:1~1:3),标记离群样本。:浅层特征包含细节信息,但YOLOv5深层会丢失小目标特征。对每个GT框,选择k个候选anchor(IoU前10%)。针对小目标优化:限制拼接图中昆虫数量≤8,避免过度拥挤。其中II为原图,LL为光照分量,RR为反射分量。

2025-04-27 18:04:18 655

原创 泰迪杯实战案例超深度解析:运输车辆安全驾驶行为分析与安全评价系统设计

在道路运输行业,不良驾驶行为(如急加速、急减速、疲劳驾驶)是引发交通事故的主要诱因,占事故总量的70%以上。,推荐结合《Python数据挖掘:入门、进阶与实用案例分析》第11章“交通大数据应用”进行扩展学习。练习GeoPandas空间计算:计算轨迹曲率、急转弯检测。:GPS漂移点干扰路线分析,急变速行为需精准识别。构建驾驶行为知识图谱:Neo4j存储规则与历史事件。:需综合安全、效率、能耗构建多目标评价体系。:融合路侧单元(RSU)数据提升检测精度。:平衡安全、效率、能耗的帕累托前沿分析。

2025-04-27 15:59:47 1157

原创 泰迪杯实战案例超深度解析:基于多源数据的信用风险评估与反欺诈检测

中小微企业贷款违约率高达8%,传统评分卡模型AUC仅0.72。征信报告(人行、百融):200+字段,含历史借贷、还款记录等。:本文涉及的完整代码、Docker部署文件及仿真数据已开源至。:新型跨平台欺诈占比35%,传统规则引擎漏检率超40%。用户:"最近资金周转困难,能否延期还款?:多任务学习、图神经网络、异常检测的融合架构。:实时推理、可解释性、隐私保护的工程实现。交易流水:每秒处理10万+条记录,含。客服:"请提供近三月银行流水...":多源异构数据的融合与特征工程方法论。:欺诈样本占比仅0.3%。

2025-04-27 15:43:39 785

原创 泰迪杯实战案例超深度解析:旅游景点游客流量预测与资源优化

清洗逻辑:剔除停留时间超过24小时的异常记录(可能为员工卡)。时间滑动窗口:24小时历史数据(15分钟粒度,共96时间步)。:节假日热门景点游客密度超过10人/㎡,排队时间长达2小时。运行轻量模型:TensorRT加速的TFLite模型。特征维度:8维(客流量、温度、降雨量、舆情得分等)。:将DeepSTN++压缩为1/4大小的学生模型。空间维度:30个关键区域(景点+交通节点)。主任务:各区域未来3天客流量(MSE损失)。模型训练:分布式训练DeepSTN++。辅助任务:区域拥堵概率(交叉熵损失)。

2025-04-27 14:22:19 873

原创 泰迪杯实战案例学习资料:城市交通流量预测与信号灯优化控制

其中 Pf=A/rowsum(A)Pf​=A/rowsum(A), Pb=AT/rowsum(AT)Pb​=AT/rowsum(AT)min⁡∑i=1N(α⋅等待时间i+β⋅停车次数i)min∑i=1N​(α⋅等待时间i​+β⋅停车次数i​)全系统集成:部署模型至边缘计算设备(如Jetson Xavier),实现端到端实时控制。路网拓扑特征:基于图神经网络(GNN)提取路口影响力(PageRank值)。:交通流量具有时空传播特性(如上游拥堵扩散至下游)。:天气(降雨量、能见度)、节假日标记、道路施工信息。

2025-04-27 11:41:02 668

原创 泰迪杯实战案例学习资料:电商用户行为分析与个性化推荐系统设计

在电商场景中,用户行为数据(点击、加购、下单)的深度挖掘是提升转化率的核心。:训练需32GB内存 + GPU(如RTX 3090),推理可使用CPU集群。:为不同用户生成Top-N商品推荐列表,要求点击率(CTR)提升20%以上。:利用类目相似性进行流量扶持(“同类目老商品”的受众用户优先曝光)。:多路召回(协同过滤+热门商品+类目偏好)→ 生成1000候选集。:需兼顾平台GMV(成交总额)与用户体验(推荐多样性)。:长尾商品(80%商品点击量<10次)难以建模。

2025-04-27 10:34:12 1237

原创 泰迪杯实战案例学习资料:基于穿戴装备的身体活动监测与健康预警系统设计

随着可穿戴设备的普及(如智能手环、智能手表),如何从加速度计数据中挖掘用户行为特征,已成为健康管理领域的关键问题。本案例基于穿戴设备采集的。:根据代谢当量(MET值)划分用户活动类型(如睡眠、久坐、运动),并统计各类型时长8。:按国际标准划分活动等级(如MET<1.0为睡眠,MET≥6.0为高强度运动)8。:三轴加速度数据(采样频率50Hz)、MET值标签、用户属性(性别、年龄)。:通过聚类算法划分夜间睡眠状态(深度睡眠、浅睡眠、觉醒)8。:NVIDIA GPU(训练阶段)、树莓派4B(部署阶段)。

2025-04-27 10:04:29 621

原创 泰迪杯实战案例学习资料:生产线的故障自动识别和人员配置优化

toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_schedule, n=10) # 10个任务。model.add(Dense(1, activation='linear')) # 回归任务,预测故障倒计时(小时)特征维度(feature_dim):10(温度、振动、电流等原始特征+衍生特征)。实时监测设备状态,预测故障类型(如机械磨损、电路故障)及发生时间(精确到小时)。

2025-04-26 22:58:10 964

原创 WebUI可视化:第7章:系统优化与部署实战

demo.queue(concurrency_count=5) # 控制并发数。prevent_thread_lock=True, # 防止界面冻结。share=False # 关闭临时分享链接。:使用自动扩展组(Auto Scaling)能否独立完成Docker镜像的构建与推送?:选择计算优化型实例(如AWS C5):选择内存优化型实例(如AWS R5)# 示例:Gradio异步处理。使用Spot实例(适合可中断任务)# 防止敏感文件泄露。# 限制文件上传大小。使用预留实例(比按需便宜40%)

2025-04-25 21:45:01 902

原创 WebUI可视化:第6章:项目实战:智能问答系统开发

model = AutoModel.from_pretrained(...).float() # 使用CPU。outputs=gr.Textbox(label="最近10条记录")msg = gr.Textbox(label="输入问题")clear = gr.Button("清空历史")).half().cuda() # GPU加速。gr.Button("查看历史").click(gr.Button("提交评分").click(gr.Markdown("# 智能问答系统")

2025-04-25 21:43:09 758

原创 WebUI可视化:第5章:WebUI高级功能开发

✅ 掌握复杂交互逻辑的实现✅ 学会自定义界面样式与布局✅ 实现安全高效的文件处理✅ 优化性能与用户体验。

2025-04-25 21:08:13 1049

原创 WebUI可视化:第4章:Streamlit数据可视化实战

python<style></style>4.6 状态管理与缓存。

2025-04-25 21:06:58 909

原创 WebUI可视化:第3章:Gradio入门实战

在launch()中添加主题:python))或直接注入CSS:pythoncss = """important;"""3.5 事件处理机制。

2025-04-25 21:05:06 995

原创 WebUI可视化:第2章:技术基础准备

<head><style>body {.detail {</style></head><body>-- 在此编写内容 --></body>

2025-04-25 21:02:28 603

原创 WebUI可视化:第1章:WebUI基础认知

是通过浏览器访问的交互界面,无需安装本地软件。就像使用网页版微信,打开浏览器即可操作。

2025-04-25 21:00:26 959

原创 DeepSeek本地部署手册

load_in_8bit: True # 8位量化节省显存。http://localhost:7860 # 本地访问。http://[服务器IP]:7860 # 远程访问。# 创建requirements.txt文件。减少批量大小:在config中设置。macOS 12+(仅CPU推理)# Ubuntu示例安装命令。启用4位量化:修改配置为。:不要在代码中明文存储密钥。# 安装git大文件支持。:定期检查模型文件哈希值。使用CPU卸载:添加。

2025-04-25 20:57:27 1082

简历数据集(PDF 格式的简历集合以及用于数据提取的字符串格式)

关于 Dataset 上下文 从 livecareer.com 获取的 Resume Examples 集合,用于将给定简历分类为数据集中定义的任何标签。 内容 包含 2400+ 字符串和 PDF 格式的简历。 存储在数据文件夹中的 PDF 分为各自的标签作为文件夹,每份简历都以 PDF 格式驻留在文件夹内,文件名为 CSV 中定义的 ID。 在 CSV 中: ID:相应 PDF 的唯一标识符和文件名。 Resume_str :仅包含字符串格式的简历文本。 Resume_html :包含网页抓取时存在的 html 格式的简历数据。 类别 :简历用于申请的工作类别。 目前的类别是 人力资源、设计师、信息技术、教师、倡导者、业务发展、医疗保健、健身、农业、BPO、销售、顾问、数字媒体、汽车、厨师、金融、服装、工程、会计师、建筑、公共关系、银行、艺术、航空

2025-06-04

新闻类别数据集(根据标题和简短描述确定新闻类型 )

关于 Dataset 该数据集包含来自《赫芬顿邮报》的 2012 年至 2022 年的大约 210k 条新闻标题。这是最大的新闻数据集之一,可以作为各种计算语言任务的基准。赫芬顿邮报在 2018 年首次收集此数据集后的某个时候停止维护大量新闻文章档案,因此目前无法收集此类数据集。由于网站的变化,2012 年至 2018 年 5 月期间大约有 200k 个标题,2018 年 5 月至 2022 年期间有 10k 个标题。 内容 数据集中的每条记录都包含以下属性: category:发布文章的类别。 headline:新闻报道的标题。 authors:为文章做出贡献的作者列表。 link:链接到原始新闻文章。 short_description:新闻文章的摘要。 date:文章的发布日期。 数据集中共有 42 个新闻类别。前 15 个类别和相应的文章计数如下: POLITICS:35602 WELLNESS:17945 ENTERTAINMENT:17362 TRAVEL:9900 STYLE & BEAUTY:9814 PARENTING:8791 HEALTHY LIVING:6694 QUEER VOICES:6347 FOOD & DRINK:6340 BUSINESS:5992 COMEDY:5400 SPORTS:5077 BLACK VOICES:4583 HOME & LIVING:4320 PARENTS:3955

2025-06-04

婴儿名字数据集 (40k) 印度 & 美国

关于 Dataset 来自印度和美国文化的 40,000 个婴儿名字的多样化和广泛集合,经过精心策划,以反映文化丰富性、语言多样性和命名趋势。 此数据集非常适合数据分析、机器学习、自然语言处理、移动和基于 Web 的婴儿名字生成器、人口统计研究以及文化或语言研究项目中的应用。无论是用于创意灵感、学术探索还是软件开发,此汇编都为了解两个文化丰富的地区的名称模式和偏好提供了宝贵的资源。

2025-06-04

假与真新闻数据集(ISOT 假新闻检测数据集(二进制文本分类))

关于 Dataset 假新闻检测数据集 数据集分隔为两个文件: Fake.csv(23502 假新闻文章) True.csv (21417 真实新闻报道) 数据集列: title: 新闻文章的标题 文本:新闻文章的正文 主题:新闻报道的主题 日期:新闻报道的发布日期

2025-06-04

电子邮件网络钓鱼数据集

关于 Dataset 数据集描述 概述: 此数据集专为使用机器学习检测网络钓鱼电子邮件而设计。它结合了: 来自 Enron 电子邮件数据集的 ~500,000 封非网络钓鱼(“安全”)电子邮件 来自网络钓鱼电子邮件数据集的 ~20,000 封网络钓鱼和安全电子邮件 每封电子邮件都经过清理并通过专注于网络钓鱼指标的自定义 NLP 特征提取管道传递。目标是为分类任务提供一个即用型数据集,只需进行最少的预处理。 列详细信息 num_words- 电子邮件正文中的字数总数 num_unique_words- 使用的唯一单词计数 num_stopwords- 常用停用词的计数(例如,“the”、“and”、“in”) num_links- 检测到的超链接数量 num_unique_domains- 链接中唯一域名的数量(例如,“paypal.com”) num_email_addresses- 在文本中找到的电子邮件地址计数 num_spelling_errors- 拼写错误的单词计数 num_urgent_keywords- 紧急词的数量(例如,“紧急”、“验证”、“更新”) label- 目标变量:0 = 安全电子邮件,1 = 网络钓鱼电子邮件 笔记: 此数据集不包含原始文本或标头,仅包含用于训练/测试模型的工程功能。 拼写检查在筛选的令牌上使用 pyspellchecker。 停用词是一个固定的英文列表。 不包含任何个人或 PII 信息。

2025-06-04

TMDB 热门电影数据集

关于 Dataset 电影描述数据集 此数据集包含经典和当代电影的精选列表,以及它们的标题、流派和详细的情节描述。它包括全球知名的电影,涵盖戏剧、犯罪、浪漫、动画、奇幻、动作等类型。从《肖申克的救赎》和《辛德勒的名单》等电影杰作,到《你的名字》和《无声的声音》等标志性动漫,该数据集提供了跨文化和年代的多样化故事讲述组合。 每个参赛作品都具有以下特点: 电影名称 类型 简要描述/情节摘要 此数据集可用于: 电影推荐系统 NLP 任务,如情感分析、流派预测和文本分类 数据可视化和故事讲述 针对电影相关查询的文本摘要或聊天机器人训练 非常适合希望尝试真实世界描述性文本数据的数据科学、机器学习和自然语言处理爱好者。

2025-06-04

真假新闻 (用于训练和评估假新闻检测模型的标记新闻语料库)

关于 Dataset 假新闻检测数据集 在数字时代,错误信息的传播速度比以往任何时候都快。为了应对这一挑战,我提出了一个强大的数据集,该数据集专为开发和评估可以区分真实和虚假新闻的机器学习模型而设计。 此数据集分为两部分: True.csv – 包含 21417 篇经过验证的新闻文章,具有四个关键属性: title:文章的标题 text:新闻报道的全文 subject:类别或主题(例如,政治、世界新闻等) date:发布日期 Fake.csv – 包括 23481 篇捏造的新闻文章,这些文章的结构和属性与 True 数据集相同。 使用案例: 训练 NLP 模型以进行二元分类(假 vs 真) 错误信息的情绪和主题分析 探索真实新闻和欺骗性新闻之间的语言模式 适用于: 数据科学和机器学习学习者 专注于信息完整性的研究人员 构建新闻验证工具的开发人员

2025-06-04

美国的机器学习职位发布-数据集

关于 Dataset 该数据集包含美国各地 1000 个机器学习相关职位的招聘信息,时间跨度为 2024 年底至 2025 年初。数据直接从公司招聘页面和招聘网站收集,侧重于完整的职位描述和相关公司信息。 列描述 列 描述 job_posted_date 职位的发布日期(格式:YYYY-MM-DD)。 company_address_locality 工作或公司所在的城市或地点。 company_address_region 作业所在的美国州或地区。 company_name 发布作业的公司名称。 company_website 公司的官方网站。 company_description 公司的简短描述或使命宣言。 job_description_text 原始发布中列出的完整职位描述文本。 seniority_level 所需的资历级别(例如,实习、入门级、中高级)。 job_title 发布中列出的完整职位名称。

2025-06-04

AI 生成的故事-数据集

关于 Dataset 该数据集包含 2,866 个由 Google Gemini 2.5 Flash 生成的儿童故事,温度设置为 2 并关闭思考模式。每个故事都用安全违规和刻板印象/偏见信息进行注释。 主要特点 针对不同年龄段(4-6、7-12、13+)的完整故事 具有严重性级别(无、轻度、中度、严重)的安全违规注释 安全类别包括:暴力、scary_content、mature_themes unsupervised_activity 刻板印象/偏见注释涵盖三类:性别、文化、种族 违规和偏见的详细说明 来源归因 (AI/Human) 此数据集对于研究以下内容的研究人员很有价值: 儿童 AI 内容生成 AI 输出中的偏差检测和缓解 生成式 AI 的安全评估框架 教育内容开发 AI 伦理和负责任的 AI 开发 这些案例展示了 AI 可能生成包含细微偏见或安全问题的内容的各种场景,使其可用于开发更复杂的内容过滤器和指南。

2025-06-04

标准普尔 500 指数与财经新闻头条(2008-2024 年)-数据集

关于 Dataset 该数据集包含 2008 年至 2024 年超过 19,000+ 行的财经头条,以及标准普尔 500 指数的每日收盘价。 列: date: 交易日期 (YYYY-MM-DD) headline: 当天的财经新闻头条 close: 该日期的标准普尔 500 收盘价 您可以使用此数据集来: 对新闻与市场行为进行情绪分析 将情绪得分与价格变动相关联 构建预测模型或基于 NLP 的交易策略

2025-06-04

巴西电子商务公共数据集by Olist(100,000 个包含产品、客户和评论信息的订单 )

数据集 这是在 Olist Store 下达的订单的巴西电子商务公共数据集。该数据集包含 2016 年至 2018 年在巴西多个市场下达的 100k 个订单的信息。其功能允许从多个维度查看订单:从订单状态、价格、付款和货运绩效到客户位置、产品属性,最后是客户撰写的评论。我们还发布了一个地理位置数据集,将巴西邮政编码与纬度/液化天然气坐标相关联。 这是真实的商业数据,已被匿名化,评论文本中对公司和合作伙伴的引用已被《权力的游戏》各大家族的名称所取代。 客户从 Olist Store 购买产品后,卖家会收到通知以履行该订单。一旦客户收到产品或预计交货日期到期,客户将通过电子邮件收到满意度调查,他可以在其中提供购买体验的说明并写下一些评论。

2025-06-04

LinkedIn 数据工作数据集

关于 Dataset LinkedIn 数据工作数据集 抓取数据相关职位(数据分析师、数据工程师、数据科学家等)的 LinkedIn 招聘信息 概述 此数据集包含从 LinkedIn 抓取的职位发布,包括职位名称、公司、位置、描述和工作类型(远程/混合/现场)。这些数据可用于数据清理、NLP 分析、技能提取和构建 AI 驱动的工作申请工具。 数据集特征 列名称 描述 职称(例如,“Data Analyst”、“Product Analyst”) 公司招聘 公司名称 地点 工作地点(城市/国家) 描述 完整的职位描述(可能包括公司信息) Job Type 远程、混合或现场(如果可用) 可能的用例 数据清理和规范化 – 标准化职称、位置和描述。 NLP & Skill Extraction - 找到最需要的技能(Python、SQL、ML等)。 工作类型分析 – 比较远程与现场工作趋势。 AI 驱动的工作工具 – 构建 Streamlit 应用程序以生成:

2025-06-04

情感分析数据集-zip

关于 Dataset 多类情感分析数据集 (240K+ 英文评论) 描述 该数据集是来自各种在线平台的 241,000+ 条英语评论的大规模集合。每条评论都带有一个情绪标签: 0 — 负数 1 — 中性 2 — 积极 数据是从多个网站收集的。 目标是为真实世界的文本数据启用多类情感分析模型的训练和评估。数据集已经过预处理(小写,去除了标点符号、URL、数字和非索引字),并已准备好用于 NLP 管道。 列 描述 Comment 用户生成的文本内容 | |情绪标签 (0 = 负面,1 = 中性,2 = 积极) |Sentiment 使用案例 使用 LSTM、BiLSTM、CNN、BERT 或 RoBERTa 训练情绪分类器 评估预处理和分词化策略 在多类分类任务上对 NLP 模型进行基准测试 意见挖掘或文本分类方面的教育项目和研究 在大型和多样化的情感数据集上微调 transformer 模型

2025-06-04

用于讽刺和假新闻检测任务的高质量数据集

上下文 为了克服 Twitter 数据集中与噪声相关的限制,这个用于讽刺检测的新闻头条数据集是从两个新闻网站收集的。TheOnion 旨在制作时事的讽刺版本,我们收集了 News in Brief 和 News in Photos 类别(具有讽刺意味)的所有标题。我们从《赫芬顿邮报》收集真实(且非讽刺性)的新闻头条。 与现有的 Twitter 数据集相比,这个新数据集具有以下优势: 由于新闻标题是由专业人士以正式的方式撰写的,因此没有拼写错误和非正式使用。这降低了稀疏性,也增加了找到预训练嵌入的机会。 此外,由于 TheOnion 的唯一目的是发布讽刺性新闻,因此与 Twitter 数据集相比,我们获得了高质量的标签,噪音要小得多。 与回复其他推文的推文不同,我们获得的新闻标题是自包含的。这将有助于我们梳理出真正的讽刺元素。 内容 每条记录都包含三个属性: is_sarcastic: 如果记录是讽刺性的,则为 1,否则为 0 headline:新闻报道的标题 article_link:原始新闻文章的链接。有助于收集补充数据 数据的一般统计信息、有关如何在 Python 中读取数据的说明以及基本的探索性分析可以在此 GitHub 存储库中找到。可以在此 GitHub 存储库中找到在此数据集上训练的混合 NN 体系结构。

2025-06-03

女装电商服装评论-数据集

关于 Dataset 上下文 欢迎。这是一个围绕客户撰写的评论的女装电子商务数据集。它的九个支持功能提供了一个很好的环境,可以通过多个维度来解析文本。由于这是真实的商业数据,因此已对其进行匿名化处理,并且评论文本和正文中对公司的引用已替换为“零售商”。 内容 此数据集包括 23486 行和 10 个特征变量。每行对应于一条客户评论,并包含以下变量: 服装 ID:Integer 引用正在审阅的特定部分的 Categorical 变量。 年龄:审阅者年龄的正整数变量。 标题:评论标题的字符串变量。 评论文本:审阅正文的字符串变量。 额定值:客户授予的产品分数的正序数整数变量,从 1 个最差到 5 个最佳。 推荐 IND:二进制变量,说明客户推荐产品的位置,其中建议使用 1,不建议使用 0。 正面反馈计数:正整数,记录发现此评论好评的其他客户的数量。 部门名称:产品高级分区的分类名称。 部门名称:产品部门名称的分类名称。 类名称:产品类名称的分类名称。

2025-06-03

医疗保健数据集(具有多类别分类问题的虚拟数据 )

内容: 这个合成医疗保健数据集的创建是为了作为数据科学、机器学习和数据分析爱好者的宝贵资源。 灵感: 医疗保健数据通常很敏感,并受隐私法规的约束,因此难以访问以进行学习和实验。为了解决这一差距,我利用 Python 的 Faker 库生成了一个数据集,该数据集反映了医疗保健记录中常见的结构和属性。通过提供这些合成数据,我希望促进医疗保健分析领域的创新、学习和知识共享。 表格信息: 每列都提供有关患者、其入院情况和提供的医疗保健服务的特定信息,使此数据集适用于医疗保健领域的各种数据分析和建模任务。以下是数据集中每一列的简要说明 - 名字:此列表示与医疗保健记录关联的患者的姓名。 年龄:患者入院时的年龄,以年表示。 性:指示患者的性别,“男性”或“女性”。 血型:患者的血型,可以是常见的血型之一(例如,“A+”、“O-”等)。 医疗状况:此列指定了与患者相关的主要医疗状况或诊断,例如“糖尿病”、“高血压”、“哮喘”等。 入学日期:患者入住医疗机构的日期。 医生:在患者入院期间负责护理的医生的姓名。 医院:标识患者收治的医疗机构或医院。 保险提供商:此列指示患者的保险提供商,可以是多个选项之一,包括“Aetna”、“Blue Cross”、“Cigna”、“UnitedHealthcare”和“Medicare”。 账单金额:患者在入院期间为他们的医疗保健服务开具的账单金额。这表示为浮点数。 房间号:患者入院期间入住的房间号。 入场类型:指定入院类型,可以是“紧急”、“选择性”或“紧急”,以反映入院的情况。 出院日期:患者从医疗机构出院的日期,基于入院日期和实际范围内的随机天数。 药物:确定患者在入院期间开具或服用的药物。例子包括“阿司匹林”、“布洛芬”、“青霉素”、“扑热息痛”和“立普妥”。

2025-06-03

百万条新闻头条-数据集

关于 Dataset 上下文 这包含了 19 年间发布的新闻标题数据。 资料来源于著名的澳大利亚新闻来源 ABC(澳大利亚广播公司) 代理网站: (http://www.abc.net.au) 内容 格式: CSV ;单个文件 publish_date:文章的发布日期(yyyyMMdd 格式) headline_text:Ascii 、 英文 、 小写 的 标题 文本 开始日期: 2003-02-19 ;结束日期: 2021-12-31 灵感 我将这个新闻数据集视为从 2003 年初到 2021 年底全球值得注意的事件的摘要历史记录,并更详细地关注澳大利亚。 这包括 abcnews 网站在给定日期范围内发布的整个文章语料库。 凭借每天 200 篇文章的交易量和对国际新闻的良好关注,我们可以相当确定这里捕捉到了每一个重要的事件。 深入研究关键词,可以看到塑造过去十年的所有重要事件以及它们如何随着时间的推移而演变。 例如:阿富汗战争、金融危机、多次选举、生态灾难、恐怖主义、名人、犯罪活动等。

2025-06-03

100 运动影像分类数据集

内容 涵盖100种不同运动的运动图片集..图片为 224,224,3 jpg 格式。数据分为 train、test 和 valid 目录。此外,还包括一个 csv 文件,供那些希望使用它来创建自己的训练、测试和验证数据集的用户使用。 13493 训练、500 测试、500 验证图像 224,224,3 jpg 格式

2025-05-29

用于对象检测的水果图像

关于 Dataset 项目 此数据集是此项目中使用的数据。 上下文 用于对象检测的不同数据集。train 文件夹中有 240 张图片。测试文件夹中有 60 张图片。 内容 3 种不同的水果: 苹果 香蕉 橙

2025-05-29

CAPTCHA 图像-zip

关于 Dataset 上下文 此数据集包含 CAPTCHA(区分计算机和人类的完全自动化公共图灵测试)图像。建于 1997 年,供用户识别和阻止机器人(以防止垃圾邮件、DDOS 等)。从那时起,它们就被 reCAPTCHA 取代,因为它们可以使用人工智能破解(我鼓励你这样做)。 内容 图像是 5 个字母的单词,可以包含数字。图像应用了杂色(模糊和线条)。它们是 200 x 50 PNG。

2025-05-29

python游戏源码-坦克大战.zip

python游戏源码-坦克大战.zip 1、下载后可以直接运行

2025-06-12

python游戏源码-俄罗斯方块.zip

python游戏源码-俄罗斯方块 下载后可以直接运行

2025-06-12

python游戏源码-五子棋.zip

1、下载下来可以直接运行 2、用于练手、毕业设计源码

2025-06-12

python游戏源码-文字冒险.zip

1、可以直接下载下来运行 2、用于毕业设计、练手

2025-06-12

python游戏源码-围棋.zip

1、下载之后可以直接运行 2、用于练手、毕业设计

2025-06-12

python游戏源码-外星人大战.zip

下载下来可以直接运行 用于毕业设计、练手

2025-06-12

python游戏源码-贪吃蛇.zip

python游戏源码-贪吃蛇.zip 1、下载后可以直接运行 2、用于练手、课程设计、毕业设计

2025-06-12

python游戏源码-扫雷.zip

python游戏源码-扫雷.zip 1、下载之后可以直接运行 2、课程设计、毕业设计

2025-06-12

python游戏源码-连连看.zip

python游戏源码-连连看.zip 可以用作练手,下载后可以直接运行

2025-06-12

python游戏-酷跑游戏.zip

python游戏-酷跑游戏.zip 可以用作练手项目,下载后可以直接运行

2025-06-12

python游戏源码-魂斗罗.zip

python游戏源码-魂斗罗.zip 下载后可以直接运行,可以用作练手。

2025-06-12

python游戏-飞机大战.zip

python游戏-飞机大战.zip 下载后可以直接运行

2025-06-12

python游戏源码-吃苹果

python游戏源码-吃苹果 可以直接运行

2025-06-12

python游戏源码-2048

python游戏 2048 下载好库文件之后可以直接运行

2025-06-12

学生心理健康分析-数据集

该数据集包含学生对在线学习时代心理健康状况的回答。数据是通过调查收集的,重点关注受远程教育影响的各种心理和行为方面。 该数据集可用于探索性数据分析 (EDA)、数据可视化和预测建模,以更好地了解在线教育如何影响学生的心理健康。 该数据集由 1,000 个条目和 10 列组成,涵盖人口统计详细信息、生活习惯和自我报告的心理健康指标。以下是这些列及其用途的摘要: |名字学生的名字(分析时非必需;可以匿名化) |性受访者的性别(男/女) |年龄年龄(岁) |教育水平学术水平(例如,8 年级、BTech、MSc) |屏幕使用时间(小时/天)在线学习期间每天的平均屏幕时间 |睡眠持续时间 (小时)平均每日睡眠时长 |体力活动(小时/周)每周运动时间 |压力水平报告的压力水平(低、中、高) |考试前焦虑学生在考试前是否感到焦虑(是/否) |学业成绩变化自我评估的学习成绩变化

2025-06-05

学生的社交媒体成瘾数据

概述 学生社交媒体与关系数据集包含学生社交媒体行为和相关生活结果的匿名记录。它跨越多个国家和学术层次,侧重于使用强度、平台偏好和关系动态等关键维度。每行代表一个学生的调查响应,提供适用于统计分析和机器学习应用程序的横截面快照。 范围和覆盖范围 人口:16-25 岁的学生就读于高中、本科或研究生课程。 地理:多国覆盖(例如,孟加拉国、印度、美国、英国、加拿大、澳大利亚、德国、巴西、日本、韩国)。 时间框架:数据通过 2025 年第一季度进行的一次性在线调查收集。 卷:根据研究需求配置样本量(例如,100、500、1,000 条记录)。 关键变量 变量 类型 描述 Student_ID 整数 唯一受访者标识符 年龄 整数 年龄(岁) 性 分类 “男”或“女” Academic_Level 分类 高中 / 本科 / 研究生 国家 分类 居住国家/地区 Avg_Daily_Usage_Hours 浮 每天使用社交媒体的平均小时数 Most_Used_Platform 分类 Instagram、Facebook、TikTok 等。 Affects_Academic_Performance 布尔 自我报告对学术的影响(是/否) Sleep_Hours_Per_Night 浮 平均夜间睡眠时间 Mental_Health_Score 整数 自评心理健康 (1 = 差到 10 = 优秀) Relationship_Status 分类 单身 / 恋爱中 / 复杂 Conflicts_Over_Social_Media 整数 社交媒体引起的关系冲突数量 Addicted_Score 整数 社交媒体成瘾评分(1 = 低到 10 = 高)

2025-06-05

健康与睡眠关系数据集(csv)

描述 此数据集探讨了睡眠模式与整体健康状况之间的关系。它包括有关个人睡眠习惯、健康指标和生活方式因素的详细信息,从而能够分析睡眠质量和持续时间如何影响身心健康。该数据集旨在支持有关睡眠卫生、慢性健康状况、心理健康和生活方式对睡眠影响的研究。 分类目录 健康促进 和 健康维护

2025-06-05

学生学业成绩数据集-zip

关于 Dataset Student Academic Performance Dataset – 一个精心策划的高质量数据集,专为数据科学初学者和教育研究人员设计,用于执行全面的探索性数据分析 (EDA) 并构建预测模型。

2025-06-05

学生习惯与学习成绩-数据集

关于 Dataset 这是一个模拟数据集,探索生活习惯如何影响学生的学习成绩。它拥有 1,000 条综合学生记录和 15+ 功能,包括学习时间、睡眠模式、社交媒体使用、饮食质量、心理健康和期末考试成绩,非常适合 ML 项目、回归分析、聚类和数据可视化。使用逼真的模式创建,用于教育实践。 有没有想过 Netflix、睡眠或 TikTok 滚动对您的成绩有多大影响?该数据集模拟了 1000 名学生的日常习惯(从学习时间到心理健康),并将其与期末考试成绩进行比较。这就像通过生活方式的镜头窥探你的 GPA。非常适合 EDA、ML 练习,或者只是在假装高效的同时与数据共鸣。

2025-06-05

真实和虚假招聘信息数据集

作用:真实/虚假职位发布预测 该数据集包含 18K 个职位描述,其中大约 800 个是假的。数据由文本信息和有关作业的元信息组成。该数据集可用于创建分类模型,这些模型可以学习欺诈性的职位描述。 该数据集非常有价值,因为它可用于回答以下问题: 创建使用文本数据特征和元特征的分类模型,并预测哪些职位描述是欺诈性的或真实的。 识别职位描述中具有欺诈性质的关键特征/特征(单词、实体、短语)。 运行上下文嵌入模型以确定最相似的职位描述。 对数据集执行探索性数据分析,以从此数据集中识别有趣的见解。

2025-06-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除