泰迪杯特等奖案例学习资料:基于卷积神经网络与集成学习的网络问政平台留言文本挖掘与分析

(第八届“泰迪杯”数据挖掘挑战赛A题特等奖案例深度解析)

一、案例背景与核心挑战

1.1 应用场景与行业痛点

随着“互联网+政务”的推进,网络问政平台成为政府与民众沟通的重要渠道。某市问政平台日均接收留言超5000条,涉及民生、环保、交通等20余类诉求。然而,传统人工分类与处理模式存在以下问题:

  • 效率瓶颈:人工标注员日均处理量仅200条,且需具备政策理解能力,响应延迟常超过48小时。

  • 语义复杂性:留言文本包含方言、错别字、情感倾向(如投诉/建议/咨询),单一规则引擎分类准确率不足60%。

  • 热点挖掘困难:突发公共事件(如暴雨内涝)的留言难以实时聚类,导致应急响应滞后。

技术挑战

  1. 文本多样性:短文本占比70%(平均长度15字),长文本含多主题(如“小区停车难+绿化缺失”)。

  2. 标注数据稀缺:已标注数据仅10万条,且类别极度不平衡(高频类“交通管理”占比30%,低频类“文物保护”不足0.1%)。

  3. 实时性要求:需在5秒内完成单条留言分类并推送至对应部门。

1.2 技术目标与评估指标
任务 技术指标 实现难点
文本分类(宏平均F1) >0.92(基线模型0.78) 短文本语义稀疏性与类别歧义
主题聚类(轮廓系数) >0.65(K-Means基线0.42) 多主题混合文本的表示学习
情感分析(准确率) >88%(BERT微调基线85%) 隐式情感表达(如反讽)识别
系统吞吐量 >200条/秒(CPU集群) 模型轻量化与分布式计算优化

二、数据工程:从原始文本到高质量特征表示

2.1 数据采集与预处理

数据来源

  • 问政平台API:实时爬取留言文本、时间戳、用户属地等元数据。

  • 历史工单库:包含已处理的10万条标注数据(类别、处理部门、解决状态)。

预处理流程

  1. 噪声过滤

    • 正则表达式去除URL、特殊符号。

      python

      import re  
      text = re.sub(r'http[s]?://\S+', '', text)  # 删除URL  
      text = re.sub(r'[^\w\s\u4e00-\u9fff]', '', text)  # 删除非中文字符和标点  
    • 基于规则库(如广告关键词表)剔除垃圾信息。

  2. 文本规范化

    • 方言转换:建立“方言-标准词”映射表(如“粑耳朵”→“怕老婆”),覆盖2000+方言词。

    • 纠错算法:基于编辑距离与语言模型(KenLM)修正错别字。

      python

      from pycorrector import Corrector  
      corre
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习的锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值