一、 数理逻辑
1.
2.
解析:19.其实也可以找极小项: m5
3.
解析:
4.
5.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以
6.
7.
8.
9.
10.
大题:
考查解释:
2.
3.
解答:
① s 附加前提引入 ② s->p 前提引入 ③p ①② 假言推理 ④p->(q->r) 前提引人
⑤ q->r ③④假言推理 ⑥ q 前提引入 ⑦r ⑤⑥ 假言推理 ⑧ s->r ①⑦附加前提
二、 集 合
1.
答案:A-∅=A ∵任何集合减去∅均为其本身,两个集合相减=第一个集合去掉两者相同的部分。 幂集个数为2的(元素个数)次方。
2.
3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是a1= {(a,1), (b,1)}, a2= {(a,2), (b,2)},a3= {(a,1), (b,2)}, a4= {(a,2), (b,1)},其中双射的是_ a3, a4.
4.
6.
集合的基数:集合A={1,2,…,n},含有n个元素,这个集合的基数是n,记为card A = n 表示集合中所含元素多少的量,也可记为|A|=n
7.
大题:
1.
4. A, B为两个任意集合,求证:A-(A∩B) = (A∪B)-B .
解答:
证明:A-(A∩B)
= A∩~(A∩B)=A∩(~A∪~B)=(A∩~A)∪(A∩~B)
=∅∪(A∩~B)
=(A∩~B)
=A-B
而 (A∪B)-B
= (A∪B)∩~B
= (A∩~B)∪(B∩~B)
= (A∩~B)∪∅
= A-B
所以:A-(A∩B) = (A∪B)-B.
2.设A,B为任意集合,证明:(A-B)-C = A-(B∪C).
解答:
证明:(A-B)-C = (A∩~B)∩~C
= A∩(~B∩~C)
= A∩~(B∪C)
= A-(B∪C)
三、 二元关系
1.设集合A中有3个元素,则A上的二元关系有( 512 )个,其中有( 27 )个是A到A的函数.
解答:二元关系个数等于2^(3*3),A到A的函数要求定义域要满,即固定3位数,其余随意取故有3*3*3.. 具体:设A = {0, 1, 2},则A上不同关系的个数为 512
2. 设D24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( 8 ),4的补元( 不存在 ),6的补元( 不存在 ).
最大元与最小元互为补元。求其余元素的补元时,若A与B互为补元,从这两个点出发的路径,向上只相交于最大元,向下只相交于最小元。
3.
4.
5.设R是集合A上的等价关系,则R所具有的关系的三个特性是__自反性;对称性;传递性 .而偏序关系的三个特性分别为:自反性,反对称性,传递性·。
6. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1·R2 = {(1,3),(2,2),(3,1)} ,R2·R1 = {(2,4),(3,3),(4,2)} , R12 = { (2,2),(3,3)}.
7. 8.
9.设 A 为非空集合,A 的商集就是 A 的一个划分(对)
10.. 设 X={a,b,c,d},Y={1,2,3},f={<a,1>,<b,2>,<c,3>},则 f 是从 X 到 Y 的二元关系,但不是从 X 到 Y 的函数 ( √)
11.关于整数集Z上的“<”关系R,以下描述不正确的是( D )
A.R的自反闭包是“≤”关系 B.R的对称闭包是“≠”关系
C.R的传递闭包是它本身 D.R的反自反闭包是“>”
(三)大题 

找出{15,30}的所有下界,如果存在的话求出最大下界。 3,5
解析:极大元素:即极大元·,没有元素比他大(在它的范围它是大哥);极小元素:即极小元·,没有元素比他小(在它的范围它是小弟);显然,孤立的点既是极大元素也是极小元素。
最大元素:即 在全部范围没有元素比他大,否则无最大元;最小元素:即最小元·,即 在全部范围没有元素比他小;
上界:偏序集中大于或等于它的子集中一切元素的元素。
下界:偏序集中小于或等于它的子集中一切元素的元素。
最小上界(上确界): 上界中最小元。
最大下界(下确界):下界最大元。
2.
3.
4.
四、函数
(二)选择题
(三)大题
1.函数复合:
五、 图论
(一)判断题
1.无向完全图Kn (n>=3) 都是欧拉图。(×); K5既是欧拉图又是哈密顿图。( 对 );
对于顶点个数大于2的图,如果图中任意两点度的和大于或等于顶点总数,那这个图一定是哈密顿图。(对);
设无向图G具有割点,则G中一定不存在哈密尔顿通路。( × );
度数为奇数的结点个数为0个或2个的连通的无向图G可一笔画出。(欧拉图定义)(√);
2.若无向连通图G中存在桥,则G的点连通度和边连通度都是1。 ( √ );
任何平面图G的对偶图G*都是连通平面图。( √ );
图G中的初级回路(基本回路)都是简单的回路。 ( 对 );
2.
(二)选择题
3.设图G的相邻矩阵为,则G的顶点数与边数分别为( D ).
(A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8.
4.设G是连通平面图,有5个顶点,6个面,则G的边数( A ).欧拉公式:面数+顶点数=边数+2
(A) 9条 (B) 5条 (C) 6条 (D) 11条.
5.若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是(C ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).
能判断:首先度之和是偶数(利用奇数度节点的个数是偶数)
每个节点度数最多为(n-1),n为节点个数.
9.
10.
11.
(三)大题

2.
答:
树论
(一)判断题·:
1.任何无向树都是二部图。(对 );
(二)填空题
1.不同构的5阶根树有( 9 )棵.
解析:如图
6.设G是5个顶点的完全图,则从G中删去( 6 )条边可以得到树.(A)6 (B)5 (C)10 (D)4.
7.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为_12 _,分枝点数为 _3_ .
8.设G是具有8个顶点的树,则G中增加__21_条边才能把G变成完全图.
解析:完全图边数:n*(n-1)/2 树的边数:n-1 故为增加边数为:(n-2)*(n-1)/2。
9.
解析:
(三)大题
1.设无向树 T 中,有 2 个 2 度顶点,2 个 3 度顶点,1 个 4 度顶点,其余 的顶点均为树叶,试求 T 的阶数 n,边数 m,树叶数 t。
解答:由常识可知:n=m-1,由握手定理可知,2m=2(n-1)=2*2+2*3+1*4+t*1;
t+2+2+1=n; 解得:n=11,m=10,t=6
2.

