离散数学期末考试复习预测题二(内附详细解析)

离散数学期末考试复习预测题二

重要考点一:

一、证明题(10分)

1)(ØP∧(ØQ∧R))∨(Q∧R)∨(P∧R)ÛR

证明: 左端Û(ØP∧ØQ∧R)∨((Q∨P)∧R)Û((ØP∧ØQ)∧R))∨((Q∨P)∧R)

Û(Ø(P∨Q)∧R)∨((Q∨P)∧R)Û(Ø(P∨Q)∨(Q∨P))∧R

Û(Ø(P∨Q)∨(P∨Q))∧RÛT∧R(置换)ÛR

2)$x(A(x)®B(x))Û "xA(x)®$xB(x)

证明 :$x(A(x)®B(x))Û$x(ØA(x)∨B(x))Û$xØA(x)∨$xB(x)ÛØ"xA(x)∨$xB(x)Û"xA(x)®$xB(x)

二、求命题公式(P∨(Q∧R))®(P∧Q∧R)的主析取范式和主合取范式(10分)

证明:(P∨(Q∧R))®(P∧Q∧R)ÛØ(P∨(Q∧R))∨(P∧Q∧R))

Û(ØP∧(ØQ∨ØR))∨(P∧Q∧R)

Û(ØP∧ØQ)∨(ØP∧ØR))∨(P∧Q∧R)

Û(ØP∧ØQ∧R)∨(ØP∧ØQ∧ØR)∨(ØP∧Q∧ØR))∨(ØP∧ØQ∧ØR))∨(P∧Q∧R)

Ûm0∨m1∨m2∨m7

ÛM3∨M4∨M5∨M6

三、推理证明题(10分)

 

  1. C∨D, (C∨D)® ØE, ØE®(AØB), (AØB)®(R∨S)ÞR∨S

证明:(1) (C∨D)®ØE       

(2) ØE®(A∧ØB)         

(3) (C∨D)®(A∧ØB)

(4) (A∧ØB)®(R∨S)          

(5) (C∨D)®(R∨S)      

(6) C∨D        

(7) R∨S

2) "x(P(x)®Q(y)∧R(x)),$xP(x)ÞQ(y)$x(P(x)∧R(x))

证明(1)$xP(x)

(2)P(a)

(3)"x(P(x)®Q(y)∧R(x))

(4)P(a)®Q(y)∧R(a)

(5)Q(y)∧R(a)

(6)Q(y)

(7)R(a)

(8)P(a)

(9)P(a)∧R(a)

(10)$x(P(x)∧R(x))

(11)Q(y)∧$x(P(x)∧R(x))

四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍

五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)

六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,yÎN∧y=x2},S={<x,y>| x,yÎN∧y=x+1}。求R-1、R*S、S*R、R{1,2}、S[{1,2}](10分)

七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。

八、(15分)设<A,*>是半群,对A中任意元ab,如ab必有a*bb*a,证明:

(1)A中每个元a,有a*aa

(2)A中任意元ab,有a*b*aa

(3)A中任意元a、bc,有a*b*ca*c

证明  由题意可知,若a*bb*a,则必有ab

(1)由(a*a)*aa*(a*a),所以a*aa

(2)a*(a*b*a)=(a*a)*(b*a)=a*b*(a*a)=(a*b*a)*a,所以有a*b*aa

(3)由(a*c)*(a*b*c)=(a*c*a)*(b*c)=a*(b*c)=(a*b)*c=(a*b)*(c*a*c)=(a*b*c)*(a*c),所以有a*b*ca*c

九、给定简单无向图G=<VE>,且|V|=m,|E|=n。试证:若G是哈密尔顿图

重要考点二:

1.什么是命题逻辑公式?举例说明.

定义  命题公式,简称公式,定义为:

(1)命题变元是公式;

(2)如果P是公式,则﹁P是公式;

(3)如果P、Q是公式,则P∧Q、P∨Q、PQ、

     PQ都是公式;

4)当且仅当能够有限次的应用(1) 、(2)、(3)

   所得到的包括命题变元、联结词和括号的符号

   串是才是公式。

例如(﹁P∨Q)∧R

2. 什么是恒假的命题逻辑公式?举例说明.

定义  设G为公式:

如果G在所有解释下取值均为假,则称G是永假式或矛盾式;

例如   ﹁(PQ)∧R

3. 什么是命题逻辑的解释?举例说明.

定义 设G是命题公式, P1,P2,…,Pn是出现在命题公式G中的全部命题变元,指定P1,P2,…,Pn的一组真值,称这组真值为G的一个解释或赋值,记作I,公式G在I下的真值记作TI(G)。

例如,G=(﹁PQ)®R,则I

    P   Q   R

    1   1    0

是G的一个解释,在这个解释下G的真值为1,即TI(G)=1。
4. 什么是命题逻辑的主析取范式?举例说明.

设G为公式,P1,P2,…,Pn为G中的所有命题变元,若G的析取范式中每一个合取项都是P1,P2,…,Pn的一个极小项,则称该析取范式为G的主析取范式

5. 什么是命题逻辑的主合取范式?举例说明.

设G为公式,P1,P2,…,Pn为G中的所有命题变元,若G的合取范式中每一个析取项都是P1,P2,…,Pn的一个极大项,则称该合取范式为G的主合取范式。

6. 什么是命题逻辑的析取范式?举例说明.

由有限个简单合取式构成的析取式称为析取范式。、

例如  P∨Q∨R

7. 什么是命题逻辑的合取范式?举例说明.

由有限个简单析取式构成的合取式称为合取范式。
例如  P∨Q∨R

8. 什么是谓词逻辑公式, 举例说明.

定义2.2.3  谓词演算的合式公式定义如下:

(1)原子公式是合式公式;

(2)若A是合式公式,则(﹁A)也是合式公式;

(3)若A,B是合式公式,则(A∧B)、(A∨B)、(A→B)、

(A↔B)是合式公式;

4)若A是合式公式,则是合式公式;

(5)只有有限次地应用(1)~(4)构成的符号串才是合式公式。

例如:计算机系的学生都要学离散数学。

令C(x):x是计算机系的学生,G(x):x要学离散数学;

则命题(2)可符号化为:

9.什么是谓词逻辑公式的解释, 举例说明.

谓词逻辑公式的一个解释I,是由非空区域D和对G中常

项符号、函数符号、谓词符号以下列规则进行的一组指定组成:

(1)对每一个常项符号指定D中一个元素。

(2)对每一个n元函数符号,指定一个函数。

(3)对每一个n元谓词符号,指定一个谓词。

显然,对任意公式G,如果给定G的一个解释I,则G在I的解释下

有一个真值,记作TI(G)。

例2.2.6  设有公式:

在如下给出的解释下,判断该公式的真值。

解  (1)解释I为:  D:整数集合。  F(x,y):x+y=0    G(x,y):x>y

因为对任意的x,任意yÎD,有x+y=0为“假”,所以无论G(x,y)为“真”或“假”,都有

F(x,y)→G(x,y)为“真”

所以($x)("y)(F(x,y)→G(x,y))为“真”。

10. 什么是两集合的交集? 举例说明.

定义对于任意两个集合A、B,由所有既属于A又属于B的元

素构成的集合,称作A与B的交集,记作A∩B。

例如例如,A={a,b,c},B={b,c,d,e},则A∩B={b,c}

11. 什么是一个集合的幂集合? 举例说明.

定义  设A是有限集,由A的所有子集作为元素而构成的集

合称为A的幂集

例如:A={1,2,3},则

   ρ(A)={Æ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

12. 什么是关系, 举例说明.

设A,B是两个集合,R是笛卡儿积A×B的任一子集,

则称R为从A到B的一个二元关系,简称关系

例 设A={a,b,c,d,e},B={1,2,3},R={<a,2>,<b,3>,<c,2>}

13. 什么是关系的自反性, 对称性, 传递性?

设R是集合A上的二元关系,如果对于每个xA,都有

<x,x>R,则称二元关系R是自反的。

设R是集合A上的二元关系,如果对于每个x,yA,当<x,y>R,就有<y,x>R,则称二元关系R是对称的。

设R是集合A上的二元关系,如果对于任意x,y,zA,当<x,y>R,<y,z>R,就有<x,z>

R,则称二元

关系R在A上是传递的。

例  设A={1,2,3},

 R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>}

14. 什么是等价关系, 举例说明.

设R是非空集合A上的二元关系,如果有R是自反的、

对称的和传递的,则称R是集合A上的等价关系

例  设A={1,2,3},

 R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>}

15. 什么是偏序关系, 举例说明.

设R是集合A上的一个关系,如果有R是自反的、

反对称的和传递的,则称R是A上的一个偏序关系

例   设R是集合A={2,3,6,8}上的关系,R={<x,y>│x整

除y},验证R是偏序关系。

证明  R={<2,2>,<2,6>,<2,8>,<3,3>,<3,6>,<6,6>,

<8,8>},容易验证R是自反的、反对称的和传递的。故它是偏

序关系。

16 什么是欧拉图? 什么是哈密顿图?

通过图中所有边一次且仅一次行遍所有顶点的回路,称为欧拉回路;
具有欧拉回路的图,称为欧拉图;

在图8.1-1中,(a)存在欧拉通路,但不存在欧拉回路,因而它不是欧拉图。

而(b)中存在欧拉回路,所以(b)是欧拉图。

经过图中所有顶点一次且仅一次的回路,称为哈密尔顿回路;

具有哈密尔顿回路的图,称为哈密尔顿图;

 

在图8.2-2中,(a)、(b)中存在哈密尔顿回路,是哈密尔顿图,(c)中存在哈密尔顿通路,但不存在哈密尔顿回路,是半哈密尔顿图,(d)中既无哈密尔顿回路,也无哈密尔顿通路,不是哈密尔顿图。

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叁佰_542586

天桥底下的穷屌丝和他の破鞋草席

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值