人工智能 ---搜索算法

(一)Dijkstra-Prim 算法和 Kruskal 算法

        Dijkstra-Prim算法基本思路:所有节点分成两个group,一个为已经选取的selected_node(为list类型),一个为candidate_node,首先任取一个节点加入到selected_node,然后遍历头节点在selected_node,尾节点在candidate_node的边,选取符合这个条件的边里面权重最小的边,加入到最小生成树,选出的边的尾节点加入到selected_node,并从candidate_node删除。直到candidate_node中没有备选节点(这个循环条件要求所有节点都有边连接,即边数要大于等于节点数-1,循环开始前要加入这个条件判断,否则可能会有节点一直在candidate中,导致死循环)。
        Kruskal算法基本思路:先对边按权重从小到大排序,先选取权重最小的一条边,如果该边的两个节点均为不同的分量,则加入到最小生成树,否则计算下一条边,直到遍历完所有的边。

       分别用 Dijkstra-Prim 算法和 Kruskal 算法,在下图中找到一棵最小长度的
生成树。

 Dijkstra-Prim 算法 :

 Kruskal 算法:

 标答:

(二)图搜索算法

         考虑以下状态图,边上的数字是路径成本。在相同节点扩展条件下,选择节点扩展遵循字母顺序( 例如 S->X->A 应在 S->X->B 之前被扩展, S->A->Z 应在 S->B->A 之前被扩展)
1 ) 请用基于成本的统一搜索算法,给出状态被扩展的顺序是什么?返回的路径是 什么?
2 ) 考虑在上面的图中进行 A* 图搜索。行动成本和启发信息值都已在图中标出。 请给出状态被扩展的顺序是什么?返回的路径是什么?

答:

1)应用基于成本的统一搜索,状态节点被扩展的顺序是:start,B,A,D,C,Goal. 返回的路 径是:Start-A-D-Goal。

2)使用 A* 图搜索算法,状态被扩展的顺序是:Start,B,A,D,C,Goal. 返回的路径是: Start-A-D-Goal。

扩展顺序如图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尘 关

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值