(一)Dijkstra-Prim 算法和 Kruskal 算法
Dijkstra-Prim算法基本思路:所有节点分成两个group,一个为已经选取的selected_node(为list类型),一个为candidate_node,首先任取一个节点加入到selected_node,然后遍历头节点在selected_node,尾节点在candidate_node的边,选取符合这个条件的边里面权重最小的边,加入到最小生成树,选出的边的尾节点加入到selected_node,并从candidate_node删除。直到candidate_node中没有备选节点(这个循环条件要求所有节点都有边连接,即边数要大于等于节点数-1,循环开始前要加入这个条件判断,否则可能会有节点一直在candidate中,导致死循环)。
Kruskal算法基本思路:先对边按权重从小到大排序,先选取权重最小的一条边,如果该边的两个节点均为不同的分量,则加入到最小生成树,否则计算下一条边,直到遍历完所有的边。
Dijkstra-Prim 算法 :
Kruskal 算法:
标答:
(二)图搜索算法
答:
1)应用基于成本的统一搜索,状态节点被扩展的顺序是:start,B,A,D,C,Goal. 返回的路 径是:Start-A-D-Goal。
2)使用 A* 图搜索算法,状态被扩展的顺序是:Start,B,A,D,C,Goal. 返回的路径是: Start-A-D-Goal。
扩展顺序如图: