机器学习课后习题 --- 概述

教材:

(一)单选题

1.()是机器学习的合理定义? 
A:机器学习从标记的数据中学习
B:机器学习能使计算机能够在没有明确编程的情况下学习
C:机器学习是计算机编程的科学
D:机器学习是允许机器人智能行动的领域

2.一个计算机程序从经验E中学习任务T,并用P来衡量表现。并且,T的表现P随着经验E的增加而提高。假设我们给一个学习算法输入了很多历史天气的数据,让它学会预测天气。()是P的合理选择? 
A:计算大量历史气象数据的过程
B:正确预测未来日期天气的概率
C:天气预报任务
D:以上都不
 

3.回归问题和分类问题的区别是()? 
A:回归问题有标签,分类问题没有
B:回归问题输出值是离散的,分类问题输出值是连续的
C:回归问题输出值是连续的,分类问题输出值是离散的
D:回归问题与分类问题在输入属性值上要求不同

4.以下关于特征选择的说法正确的是()?
A:选择的特征需尽可能反映不同事物之间的差异
B:选择的特征越少越好
C:选择的特征越多越好
D:以上说法均不对

5.一个包含n类的多分类问题,若采用一对剩余的方法,需要拆分成()次?
A:1
B:n-1
C:n
D:n+1

6.机器学习方法传统上可以分为( )类。
A:3
B:4
C:7
D:2

7.()机器学习模型经过训练,能够根据其行为获得的奖励和反馈做出一系列决策?
A:监督学习
B:无监督学习
C:强化学习
D:以上全部

8.机器学习这个术语是由( )定义的?
A:James Gosling
B:Arthur Samuel
C:Guido van Rossum
D:以上都不是

9.哪种开发语言最适合机器学习?( )
A:C
B:Java
C:Python
D:HTML

10. ( )是机器学习的一部分,与神经网络一起工作。
A:人工智能
B:深度学习
C:A和B
D:以上都不是
 

11.( )是可用于标记数据的机器学习算法。
A:回归算法
B:聚类算法
C:关联规则算法
D:以上都不是
 

12.谷歌新闻每天收集非常多的新闻,并运用( )方法再将这些新闻分组,组成若干类有关联的新闻。于是,搜索时同一组新闻事件往往隶属同一主题的,所以显示到一起。
 
A:回归
B:分类
C:聚类
D:关联规则  

(二)多选题

1.下列哪些学习问题不属于监督学习?( )
 
A:聚类
B:降维

C:分类
D:回归
 

2.下列哪些学习问题属于监督学习?( )
 
A:回归
B:分类

C:聚类
D:关联规则
 

3.机器学习的方法由( )等几个要素构成。
 
A:模型
B:损失函数
C:优化算法
D:模型评估指标

 

4.对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。下面()模型属于线性模型?
选项:
A:K-means
B:k近邻
C:感知机

D:AdaBoost
 

(三)判断题

 朴素贝叶斯属于概率模型。
 
答案: 【正确】

根据肿瘤的体积、患者的年龄来判断良性或恶性,这是一个回归问题。
 答案: 【错误】

大部分的机器学习工程中,数据搜集、数据清洗、特征工程这三个步骤绝大部分时间,而数据建模,占总时间比较少。
答案: 【正确】

 已知你朋友的信息,比如经常发email的联系人,或是你微博的好友、微信的朋友圈,我们可运用聚类方法自动地给朋友进行分组,做到让每组里的人们彼此都熟识。
答案: 【正确】

机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课
### 机器学习第五章课后习题答案概述 对于《机器学习》这本书中的第五章节,该部分主要围绕神经网络展开讨论。针对此章节的课后习题解答,在不同资源中可以找到相关内容[^1]。 具体到第五章的习题解析上,有详细的解答应涵盖了从理论推导至实践应用等多个方面的问题分析与解决方法[^3]。例如关于神经网络的基础概念理解、前向传播算法以及反向传播算法的具体实现等问题均有所涉及[^2]。 #### 关于神经网络的理解 书中通过一系列精心设计的小题目帮助读者加深对神经网络工作原理的认识,包括但不限于激活函数的选择依据及其影响因素等知识点。 #### 实践操作指导 除了纯理论性的问答之外,还提供了实际动手的机会给学习者们。比如鼓励尝试构建简单的多层感知器模型来完成特定的任务,像手写字体识别这样的经典案例研究就非常有助于巩固所学的知识点。 ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() train_images = train_images.reshape((60000, 28, 28, 1)) test_images = test_images.reshape((10000, 28, 28, 1)) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels)) ``` 上述代码展示了如何利用TensorFlow框架搭建并训练一个用于MNIST数据集的手写数字分类任务上的卷积神经网络(CNN),这正是为了响应书中提到的相关练习而给出的一个实例化解决方案。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尘 关

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值