//给定一个 m x n 的矩阵,
//如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法
public class test01 {
public void setZeroes(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
boolean[] row = new boolean[m];
boolean[] col = new boolean[n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
row[i] = col[j] = true;
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (row[i] || col[j]) {
matrix[i][j] = 0;
}
}
}
}
public static void main(String[] args) {
int [][] arr = {{0,1,2,0},{3,4,5,2},{1,3,1,5}};
test01 ts = new test01();
ts.setZeroes(arr);
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[i].length; j++) {
System.out.print(arr[i][j]);
}
System.out.println();
}
}
}
//给你一个n x n矩阵matrix ,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
//请注意,它是 排序后 的第 k 小元素,而不是第 k 个 不同 的元素。
//你必须找到一个内存复杂度优于O(n2) 的解决方案。
import java.util.Arrays;
public class test02 {
public int kthSmallest(int[][] matrix, int k) {
int rows = matrix.length, columns = matrix[0].length;
int[] sorted = new int[rows * columns];
int index = 0;
for (int[] row : matrix) {
for (int num : row) {
sorted[index++] = num;
}
}
Arrays.sort(sorted);
return sorted[k - 1];
}
public static void main(String[] args) {
int[][] arr = {{1,5,9},{10,12,13},{12,13,15}};
int k = 8;
test02 ts = new test02();
System.out.println(ts.kthSmallest(arr,k));
}
}