文章目录
图的应用
本节是历年考查的重点。图的应用主要包括:最小生成(代价)树、最短路径、拓扑排序和关键路径。
一般而言,这部分内容直接以算法设计题形式考查的可能性极小,而更多的是结合图的实例来考查算法的具体操作过程,读者必须学会手工模拟给定图的各个算法的执行过程。
此外,还需掌握对给定模型建立相应的图去解决问题的方法。
考纲内容
(一)图的基本概念
(二)图的存储及基本操作
邻接矩阵;邻接表;邻接多重表;十字链表
(三)图的遍历
深度优先搜索;广度优先搜索
(四)图的基本应用
最小(代价)生成树;最短路径;拓扑排序;关键路径
复习提示
图算法的难度较大,主要掌握深度优先搜索与广度优先搜索。掌握图的基本概念及基本性质、图的存储结构(邻接矩阵、邻接表、邻接多重表和十字链表)及特性、存储结构之间的转化、基于存储结构上的各种遍历操作和各种应用(拓扑排序、最小生成树、最短路径和关键路径)等。
图的相关算法较多,通常只需掌握其基本思想和实现步骤,而实现代码不是重点。
1.最小生成树
一个连通图的生成树包含图的所有顶点,并且只含尽可能少的边。
对于生成树来说,若砍去它的一条边,则会使生成树变成非连通图;
若给它增加一条边,则会形成图中的一条回路。
对于一个带权连通无向图G,生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。
权值之和最小的那棵生成树称为G的最小生成树(Minimum-Spanning-Tree,MST)。
【命题追踪——最小生成树的性质】<