决策树基础

基本流程

决策树是一种常用的分类与回归方法,它可以自动地从给定的数据中提取出决策规则,并对未知数据进行预测。其基本流程如下:

  1. 收集数据:收集带标签的数据,通常包括特征和目标变量。

  2. 准备数据:对数据进行清洗、预处理和特征选择等操作。

  3. 选择特征:选取最佳的特征来划分数据集。

  4. 构建决策树:从根节点开始,按照选择特征的顺序递归地构建决策树,直到所有叶子节点都是同一类别或者满足预定条件。

  5. 函数测试:使用测试数据对决策树进行验证,以评估模型的性能。

  6. 使用决策树:将新数据输入到决策树中,根据节点判断数据属于哪个类别或者预测连续型目标变量的值。

在构建决策树时,需要选择合适的划分准则和剪枝算法,以避免过拟合和欠拟合等问题。此外,还可以通过集成学习的方法来提高决策树的性能,如随机森林和梯度提升树等。

决策树学习的目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策树

划分选择

决策树的划分选择是指在构建决策树时,如何选择最佳的特征来划分数据集。常用的划分选择方法有以下几种:

  1. 信息增益(Information Gain):信息增益是以信息熵为基础的度量,它衡量了在特征给定的条件下,目标变量的不确定性减少的程度。选择信息增益最大的特征作为划分属性。

  2. 增益率(Gain Ratio):增益率是对信息增益进行修正的方法,它考虑了特征取值的数目对信息增益的影响。增益率越高,表示特征对于区分目标变量的能力越强。

  3. 基尼指数(Gini Index):基尼指数衡量了从一个数据集中随机抽取两个样本,其类别不一致的概率。选择基尼指数最小的特征作为划分属性,即使与信息增益相比,在实际应用中,基尼指数的效果通常与信息增益相当。

  4. 方差(Variance):对于回归问题,可以使用特征的方差来度量划分的纯度。选择方差最小的特征作为划分属性。

在选择划分属性时,上述方法各有优劣,需要根据具体情况和问题类型进行选择。此外,还可以使用启发式算法如C4.5和CART等来选择最佳划分属性。这些算法综合考虑了划分属性的多个因素,如信息增益、基尼指数、方差等,以提高决策树的性能。

剪枝处理

决策树的剪枝处理是为了减少过拟合(overfitting)现象,提高模型的泛化能力。在构建决策树时,可能会出现过于复杂的情况,导致模型在训练数据上表现良好,但在未知数据上预测效果较差。

决策树的剪枝处理包括两种方法:预剪枝(Pre-pruning)和后剪枝(Post-pruning)。

  1. 预剪枝:在构建决策树的过程中,在每次划分节点之前,通过一定的条件判断是否停止划分。常用的预剪枝条件有以下几种:

    • 最大深度限制:限制决策树的最大深度,防止过度生长。
    • 最小样本数限制:当节点上的样本数低于一定的阈值时,停止划分。
    • 最小信息增益限制:当划分后的信息增益低于一定的阈值时,停止划分。

    预剪枝的优点是简单、高效,但可能会导致欠拟合问题,因为在进行划分选择时,无法全面考虑后续划分带来的收益。

  2. 后剪枝:在构建完整的决策树之后,通过自下而上的方式进行剪枝。具体步骤如下:

    • 针对每个非叶子节点,计算剪枝后的验证集上的性能指标(如准确率、误分类率等)。
    • 递归地从底部向上剪枝,将子树替换为叶子节点,并计算剪枝后的模型在验证集上的性能。
    • 如果剪枝后的模型性能提升,则进行剪枝;否则保留原有子树。

    后剪枝的优点是可以充分利用训练数据进行决策树的构建,然后通过验证集来评估和修剪模型,能够更好地提高模型的泛化能力。

预剪枝和后剪枝方法各有优缺点,需要根据具体情况选择合适的剪枝策略。同时,还可以采用交叉验证等方法来评估决策树的性能,并进行模型选择和调优。

连续值处理

在处理决策树中的连续值特征时,需要考虑如何将其离散化,使得其可以作为划分节点进行决策树的构建。下面介绍两种常用的方法:

  1. 二分法(Binary Split):对于连续值特征,可以使用二分法进行离散化。首先对该特征的取值进行排序,然后通过遍历排序后的取值,找到每两个取值之间的中点,将其作为划分点,将连续值特征转化为二分类属性。这样,决策树就可以使用该特征进行划分

  1. 基于信息增益的离散化:在决策树的构建过程中,可以使用信息增益作为指标,寻找最佳的划分点。对于连续值特征,可以遍历所有可能的划分点,并计算每个划分点的信息增益。选择信息增益最大的划分点作为最佳的离散化点,并将连续值特征转化为二分类属性。

需要注意的是,在使用这些方法对连续值特征进行离散化时,需要考虑到以下几点:

  • 特征离散化后可能会引入不确定性,因为某些取值范围内的样本可能被分到不同的子节点中。
  • 对于大量的连续值特征,离散化可能导致决策树过度复杂,影响模型解释性和泛化能力。
  • 在进行特征离散化时,需要考虑样本分布的特点以及划分点的选择策略,以提高离散化的效果。

除了上述方法,还有其他一些特征离散化的技术,如等频离散化、基于卡方检验的离散化等,根据实际情况选择合适的方法进行连续值特征的处理。

多变量决策树

多变量决策树是一种基于多个特征进行划分的决策树模型,它可以用于解决多个特征之间存在关联关系时的分类和回归问题。相比于单变量决策树,多变量决策树可以更好地捕捉不同特征之间的交互作用,提高模型的预测能力。

多变量决策树的构建方法主要有以下两种:

  1. CART算法:CART(Classification and Regression Trees)算法是一种基于二叉树结构的决策树学习算法。CART算法将多变量决策树的构建过程分解为逐个选择最优特征和最优划分点的过程,通过计算信息增益或基尼指数来评估每个特征的重要性。在选择最优特征和最优划分点后,CART算法会将数据集划分成两个子节点,并继续对每个子节点进行递归划分,直到满足停止条件为止。

  2. CHAID算法:CHAID(Chi-squared Automatic Interaction Detection)算法是一种基于卡方检验的多变量决策树学习算法。与CART算法不同的是,CHAID算法采用卡方检验来评估多个特征之间的交互作用,将具有相似分布的特征进行合并,并生成多叉树结构。CHAID算法的优点是可以处理离散型和连续型特征,并且能够检测不同特征之间的非线性关系。

需要注意的是,在构建多变量决策树时,需要选择合适的停止条件,避免过拟合的问题。同时,对于特征之间存在高度关联的情况,需要进行特征选择或者降维处理,以避免模型过于复杂或出现共线性的问题。

总结

以上就是我通过老师的ptt学习以及自己从网上学到的知识,这是对决策树基础的基本掌握。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值