Logistic回归

线性模型与回归

线性模型是一种广泛应用于统计学和机器学习领域的模型,它假设自变量与因变量之间存在线性关系。线性回归是线性模型的一种特殊形式,用于建立自变量与因变量之间的线性关系。

在线性回归中,我们试图通过拟合一个线性方程来描述自变量与因变量之间的关系。具体而言,对于给定的自变量 x 和因变量 y,线性回归模型可以表示为:

y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε

其中,y 是因变量,x1, x2, ..., xn 是自变量,β0, β1, β2, ..., βn 是回归系数(也称为权重),ε 是误差项。

线性回归的目标是通过最小化观测值 y 与预测值之间的误差来估计出最优的回归系数。常用的最小化误差的方法是最小二乘法,即通过最小化观测值与预测值之间的平方差来确定最优的回归系数。

线性回归模型可以用于预测因变量的数值,也可以用于探索自变量与因变量之间的关系。当自变量较多时,我们可以使用多元线性回归模型来建立多个自变量与因变量之间的线性关系。

需要注意的是,线性回归模型假设自变量与因变量之间存在线性关系,并且误差项服从正态分布。如果数据不满足这些假设,则线性回归模型可能不适用,需要考虑其他模型或进行数据转换等处理。

线性回归是一种简单而强大的预测建模工具,广泛应用于各个领域,包括经济学、金融学、社会科学、自然科学等。它提供了一种直观的方式来解释自变量与因变量之间的关系,并可以用于预测和推断。

例子 综合考虑色泽、根蒂和敲声来判断西瓜好不好 其中根蒂的系数最大,表明根蒂最要紧;而敲声的系数比色泽大,说明敲声比色泽更重要。

最小二乘与参数求解

最小二乘法是一种常见的参数估计方法,通常用于线性回归模型中。它的核心思想是通过最小化观测值与模型预测值之间的误差平方和来估计模型参数,即寻找最优的参数值使得误差平方和达到最小。

对于线性回归模型: [ y = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + ... + \beta_n * x_n + \varepsilon ]

最小二乘法的目标是通过最小化观测值 ( y ) 与模型预测值之间的误差平方和来估计出最优的参数 ( \beta_0, \beta_1, \beta_2, ..., \beta_n )。

在最小二乘法中,我们定义误差 ( \varepsilon ) 为观测值 ( y ) 与模型预测值 ( \hat{y} ) 之间的差异,即 ( \varepsilon = y - \hat{y} )。我们希望找到最优的参数 ( \beta_0, \beta_1, \beta_2, ..., \beta_n ) 使得观测值与模型预测值之间的误差平方和最小,即最小化以下损失函数: [ \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 ]

其中 ( N ) 表示样本数量,( y_i ) 表示第 ( i ) 个观测值,( \hat{y}_i ) 表示第 ( i ) 个观测值的模型预测值。

最小二乘法的参数求解可以通过求解损失函数的偏导数来实现。通过对损失函数分别对参数 ( \beta_0, \beta_1, \beta_2, ..., \beta_n ) 求偏导数,并令偏导数等于 0,可以得到最优的参数估计值。

具体来说,最小二乘法使用矩阵运算来求解参数估计值,通过求解以下正规方程可以得到最优的参数估计值: [ X^T X \hat{\beta} = X^T y ]

其中,( X ) 是设计矩阵,包含了所有自变量的取值;( \hat{\beta} ) 是参数估计值;( y ) 是因变量的取值。

通过求解正规方程,可以得到最优的参数估计值 ( \hat{\beta} ),即可以估计出线性回归模型中的回归系数。

最小二乘法(least square method)

对数线性回归

对数线性回归是一种广泛应用于数据分析和建模的方法,它与普通线性回归有所不同,因为它对因变量进行了对数变换。对数线性回归适用于因变量与自变量之间存在对数关系的情况,通过对因变量取对数,可以将非线性关系转化为线性关系,从而利用线性回归模型进行建模和分析。

对数线性回归模型可以表示为: [ \log(y) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + ... + \beta_n * x_n + \varepsilon ]

其中,( y ) 是因变量,( x_1, x_2, ..., x_n ) 是自变量,( \beta_0, \beta_1, \beta_2, ..., \beta_n ) 是回归系数,( \varepsilon ) 是误差项。

对数线性回归的目标是通过最小化观测值 ( \log(y) ) 与模型预测值之间的误差平方和来估计出最优的回归系数。这样做的好处在于,对数变换可以将原始的非线性关系转化为线性关系,使得模型更容易进行参数估计和解释。

在对数线性回归中,最小二乘法仍然可以用于估计回归系数。通过对观测值 ( \log(y) ) 与模型预测值 ( \log(\hat{y}) ) 之间的误差平方和进行最小化,可以得到最优的回归系数估计值。

对数线性回归常用于处理正偏态(右偏)分布的因变量数据,或者当因变量与自变量之间存在指数关系时。这种模型能够更好地拟合数据,同时也便于对模型结果进行解释和推断。

需要特别注意的是,在使用对数线性回归模型时,需要在解释模型结果时将因变量的对数转换成原始的比例形式。这样才能确保对模型结果的解释和推断是准确的。

Logistic回归

Logistic回归是一种经典的用于分类问题的统计模型,它适用于因变量是二分类(也可以扩展到多分类)的情况。Logistic回归的目标是根据自变量的取值预测出观测值属于某个类别的概率。

Logistic回归使用sigmoid函数(也称为logistic函数)将线性回归的结果映射到一个0到1之间的概率值,该函数的形式为: [ p(y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + ... + \beta_n * x_n)}} ]

其中,( p(y=1) ) 表示观测值属于类别1的概率,( x_1, x_2, ..., x_n ) 是自变量,( \beta_0, \beta_1, \beta_2, ..., \beta_n ) 是回归系数。

对于二分类问题,通常设定一个阈值,当 ( p(y=1) ) 大于该阈值时,将观测值预测为类别1,否则预测为类别0。

参数估计方面,使用最大似然估计方法来估计回归系数。最大似然估计的目标是找到最优的回归系数,使得给定样本下观测值的出现概率最大化。

Logistic回归模型可以通过梯度下降等优化算法进行参数估计,也可以使用一些统计软件包提供的函数来实现。

Logistic回归广泛应用于许多领域,如医学、社会科学、金融等。它可以用于预测患病与否、客户购买意愿、信用风险等二分类问题,并能提供概率预测结果,便于决策和解释。

Logistic回归优点

无需事先假设数据分布

可得到“类别”的近似概率预测(概率值还可用于后续应用)

可直接应用现有数值优化算法(如牛顿法)求取最优解,具有快速、高效的特点

Logistic回归:极大似然法

在Logistic回归中,参数估计通常采用极大似然估计法(Maximum Likelihood Estimation, MLE)。该方法的目标是找到一组回归系数,使得给定样本下观测值的出现概率最大化。

假设我们有一个包含N个样本的数据集,每个样本包括自变量 ( x_i ) 和因变量 ( y_i ),其中 ( y_i ) 取值为0或1。我们希望通过最大似然估计来估计回归系数 ( \beta )。

对于二分类问题,我们可以假设观测值 ( y_i ) 在给定自变量 ( x_i ) 的条件下服从伯努利分布。伯努利分布表示成: [ p(y_i|x_i;\beta) = (p(y_i=1|x_i;\beta))^{y_i} \cdot (1-p(y_i=1|x_i;\beta))^{1-y_i} ]

其中,( p(y_i=1|x_i;\beta) ) 是根据自变量 ( x_i ) 和回归系数 ( \beta ) 预测观测值 ( y_i ) 为1的概率。

将所有样本的似然函数相乘,得到整体的似然函数: [ L(\beta) = \prod_{i=1}^{N} p(y_i|x_i;\beta) ]

为了方便计算,通常取对数似然函数: [ \log L(\beta) = \sum_{i=1}^{N} \left[ y_i \log(p(y_i=1|x_i;\beta)) + (1-y_i) \log(1-p(y_i=1|x_i;\beta)) \right] ]

我们的目标是最大化对数似然函数。可以使用梯度下降等优化算法来求解最优的回归系数 ( \beta ),使得对数似然函数最大化。在实际应用中,也可以使用一些统计软件包提供的函数来直接进行参数估计。

通过极大似然估计,Logistic回归模型可以从数据中学习到最合适的回归系数,以预测观测值属于某个类别的概率。

Logistic回归:梯度下降

Logistic回归:数据分类

示例

当应用于医学领域时,Logistic回归可以用来预测患者是否患有某种疾病。例如,我们可以使用患者的年龄、性别、血压、血糖水平等作为自变量,然后根据这些自变量的取值预测患者是否患有糖尿病。

假设我们有一个包含了许多病人信息的数据集,其中每个病人都有对应的自变量和因变量(是否患有糖尿病)。我们可以使用这个数据集来训练Logistic回归模型,然后利用该模型对新的病人进行预测。

在训练过程中,Logistic回归模型会估计出一组回归系数,这些系数可以用来计算给定自变量下病人患糖尿病的概率。例如,如果模型估计出某个病人患糖尿病的概率为0.8,我们可以将阈值设为0.5,认为该病人患有糖尿病。

这样,通过Logistic回归模型,我们可以根据病人的相关特征来进行糖尿病的风险预测,帮助医生进行初步筛查和诊断,从而更好地管理患者的健康状况。

总结

Logistic回归是一种用于二分类问题的统计模型,它通过最大似然估计来估计回归系数。总结如下:

  1. Logistic回归适用于预测概率性事件,特别是二分类问题。
  2. 最大似然估计是Logistic回归中常用的参数估计方法,通过最大化对数似然函数来求解最优的回归系数。
  3. 极大似然估计的目标是找到一组回归系数,使得给定样本下观测值的出现概率最大化。
  4. 在估计过程中,我们假设观测值服从伯努利分布,并通过似然函数的乘积或对数似然函数来表达观测值的出现概率。
  5. 通过优化算法(如梯度下降)或使用统计软件包提供的函数,可以求解最优的回归系数,从而训练Logistic回归模型。
  6. 训练好的模型可以用于预测新样本的属于某个类别的概率。

Logistic回归在医学、市场营销、金融等领域具有广泛应用,能够帮助人们进行概率性事件的预测和决策。

以上就是我对Logistic回归的学习和理解

  • 18
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值