局部敏感哈希(LSH)简介

0.   Intro \textbf{0. Intro} 0. Intro

1️⃣ LSH \text{LSH} LSH的优势:在 λ \lambda{} λ较大的度量空间,也可以高效回答 c-ANN \text{c-ANN} c-ANN查询问题

2️⃣一些预备知识

  1. 多重集并集 (multi-set union):  \text{(multi-set union): } (multi-set union): 和普通并集相比区别在于保留重复项
    • 比如 Z 1 = { a , b } 和 Z 2 = { b , c } Z 1 ⇒ Z 1 ∪ Z 2 = { a , b , b , c } Z_1 = \{a, b\}和Z_2 = \{b, c\}Z_1 \Rightarrow{}Z_1\cup Z_2 = \{a, b, b,c\} Z1={a,b}Z2={b,c}Z1Z1Z2={a,b,b,c}
  2. Markov \text{Markov} Markov不等式: Pr [ X ≥ t ⋅ E [ X ] ] ≤ 1 t \text{Pr}[X \geq t \cdot \mathbf{E}[X]] \leq \frac{1}{t} Pr[XtE[X]]t1

1.   ( r , c ) -Near   Neighbor   Search \textbf{1. }(r,c)\textbf{-Near Neighbor Search} 1. (r,c)-Near Neighbor Search

1️⃣ ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN概念

image-20240731222415006
  1. r ≥ 1 r \geq 1 r1 c > 1 c > 1 c>1 S ⊆ U S\subseteq{}U SU ∣ S ∣ = n |S|=n S=n q ∈ U q \in U qU
  2. ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN查询返回: D =dist ( q , e i ) D\text{=dist}(q,e_i) D=dist(q,ei)
    image-20240803185122335
    Case \textbf{Case} Case ∃ e i 使 D ∈ [ 0 , r ] \exist{}e_i使D\in[0,r] ei使D[0,r] ∃ e i 使 D ∈ [ r , c r ] \exist{}e_i使D\in{}[r,cr] ei使D[r,cr] ∃ e i 使 D ∈ [ c r , ∞ ] \exist{}e_i使D\in[cr,\infin{}] ei使D[cr,]返回对象
    Case 1 \text{Case 1} Case 1一定可能可能满足 D ≤ c r D\leq{cr} Dcr e i e_i ei
    Case 2 \text{Case 2} Case 2不可能不可能不可能返回寂寞
    Case 3 \text{Case 3} Case 3不可能一定可能满足 D ≤ c r D\leq{cr} Dcr e i e_i ei

2️⃣引理:按以下步骤,可回答 S S S上所有 c 2 -ANN c^{2}\text{-ANN} c2-ANN查询

  1. 条件:对任意 r ≥ 1 r \geq 1 r1 c > 1 c > 1 c>1,我们已经知道了如何在 S S S上构建结构来回答 ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN查询
  2. 步骤:
    • 构建 O ( log ⁡ diam ( S ) ) O(\log \text{diam}(S)) O(logdiam(S))个这样的结构
    • 发起 O ( log ⁡ diam ( S ) ) O(\log \text{diam}(S)) O(logdiam(S)) ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN查询 ( c c c相同但 r r r不同)

2.   Locality   Sensitive   Hashing \textbf{2. Locality Sensitive Hashing} 2. Locality Sensitive Hashing

1️⃣局部敏感哈希函数定义:核心思想就是将相似的点映射进同一桶,不相似的点映射到不同桶

  1. 前提
    • r / c / p 1 / p 2 r/c/p_1/p_2 r/c/p1/p2满足 r ≥ 1 / c > 1 / 0 < p 2 < p 1 ≤ 1 r\geq{}1/c>1/0 < p_2 < p_1 \leq 1 r1/c>1/0<p2<p11
    • h h h是根据某种分布从函数族 H H H中抽取的函数
  2. 随机函数 h :  U → N h\text{: }U \rightarrow \mathbb{N} hUN ( r , c r , p 1 , p 2 ) -LSH \left(r, cr, p_1, p_2\right)\text{-LSH} (r,cr,p1,p2)-LSH函数,需满足
    • ∀ x , y ∈ U → { dist ( x , y ) ≤ r ⇒ Pr [ h ( x ) = h ( y ) ] ≥ p 1 dist ( x , y ) > c r ⇒ Pr [ h ( x ) = h ( y ) ] ≤ p 2 \forall{}x,y\in{}U\to{}\begin{cases}\text{dist}(x, y) \leq r\Rightarrow{}\text{Pr}[h(x) = h(y)] \geq p_1\\\\\text{dist}(x, y) > cr\Rightarrow{}\text{Pr}[h(x) = h(y)] \leq p_2\end{cases} x,yU dist(x,y)rPr[h(x)=h(y)]p1dist(x,y)>crPr[h(x)=h(y)]p2
    • 即两个数据靠得近( ≤ r \leq{}r r),哈希冲突到一个桶的概率就大;靠的远( > c r >cr >cr)则概率就小
  3. 此外定义 ( r , c r , p 1 , p 2 ) -LSH \left(r, cr, p_1, p_2\right)\text{-LSH} (r,cr,p1,p2)-LSH函数的对数比值为 ρ = ln ⁡ ( 1 p 1 ) ln ⁡ ( 1 p 2 ) = ln ⁡ p 1 ln ⁡ p 2 < 1 \rho = \cfrac{\ln \left(\cfrac{1}{p_1}\right)}{\ln \left(\cfrac{1}{p_2}\right)}=\cfrac{\ln{}p_1}{\ln{}p_2}<1 ρ=ln(p21)ln(p11)=lnp2lnp1<1

2️⃣放大引理:若已知如何获得 ( r , c r , p 1 , p 2 ) -LSH \left(r, cr, p_1, p_2\right)\text{-LSH} (r,cr,p1,p2)-LSH函数 h h h ∀ int  ℓ ≥ 1 \forall{\text{int }}\ell \geq 1 int 1 ( r , c r , p 1 ℓ , p 2 ℓ ) -LSH \left(r, cr, p_1^{\ell}, p_2^{\ell}\right)\text{-LSH} (r,cr,p1,p2)-LSH函数 g g g使

  1. ∀ x , g ( x ) \forall{}x,g(x) x,g(x)计算复杂度是 h ( x ) h(x) h(x) O ( ℓ ) O(\ell) O()
  2. g ( x ) g(x) g(x)空间复杂度为 O ( ℓ ) O(\ell) O()

3️⃣ LHS \text{LHS} LHS实例: ( N d , dist=Euclidean ) \left(\mathbb{N}^d,\text{dist=Euclidean})\right. (Nd,dist=Euclidean) ( r , c r , p 1 , p 2 ) -LSH \left(r, cr, p_1, p_2\right)\text{-LSH} (r,cr,p1,p2)-LSH函数

  1. 构建
    • 生成 d d d个随机变量 α 1 α 2 . . . α d \alpha_1\alpha_2...\alpha_d α1α2...αd α i ∼ N ( 0 , 1 ) \alpha_i\sim{}N(0,1) αiN(0,1)
    • β > 0 \beta > 0 β>0依赖于 c c c γ \gamma γ [ 0 , β ] [0, \beta] [0,β]中均匀随机生成
    • ∀ x ∈ N d \forall{}x\in\mathbb{N}^d xNd定义 h ( x ) = [ γ + ∑ i = 1 d ( α i ⋅ x [ i ] r ) β ] h(x)=\textbf{[}\cfrac{\gamma+\displaystyle\sum\limits_{i=1}^d\left(\cfrac{\alpha_i \cdot x[i]}{r}\right)}{\beta}\textbf{]} h(x)=[βγ+i=1d(rαix[i])]
  2. 性质: p 2 p_2 p2是一个常数,该函数的对数比值 ρ ≤ 1 c \rho\leq\cfrac{1}{c} ρc1

3.   A   Structure   for   ( r , c ) -NN   Search \textbf{3. A Structure for }(r,c)\textbf{-NN Search} 3. A Structure for (r,c)-NN Search

3.0.   Inro \textbf{3.0. Inro} 3.0. Inro

1️⃣一些前置条件

  1. S ⊆ U   ( ∣ S ∣ = n ) S\subseteq{}U\,(|S|=n) SU(S=n)
  2. 若能够构建 ρ \rho ρ ( r , c r , p 1 , p 2 ) -LSH \left(r, cr, p_1, p_2\right)\text{-LSH} (r,cr,p1,p2)-LSH函数,该结构用于在 S S S上回答 ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN查询
  3. t l s h t_{lsh} tlsh为评估 ( r , c r , p 1 , p 2 ) -LSH \left(r, cr, p_1, p_2\right)\text{-LSH} (r,cr,p1,p2)-LSH函数值所需时间

2️⃣需要证明的定理:存在这样一种结构

  1. 复杂度:
    • 空间复杂度:使用 O ( n 1 + ρ ⋅ log ⁡ 1 p 2 n ) O\left(n^{1+\rho} \cdot \log_{\frac{1}{p_2}} n\right) O(n1+ρlogp21n)个内存单元 + + +存储 O ( n 1 + ρ ) O\left(n^{1+\rho}\right) O(n1+ρ)个对象
    • 时间复杂度:查询耗时 O ( n ρ ⋅ log ⁡ 1 p 2 n ⋅ t l s h ) + O\left(n^\rho \cdot \log_{\frac{1}{p_2}} n \cdot t_{lsh}\right)+ O(nρlogp21ntlsh)+计算距离耗时 O ( n ρ ) O\left(n^\rho\right) O(nρ)
  2. 效果:能够至少以 1 10 \cfrac{1}{10} 101的概率,正确回答一次 ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN查询

3.1.   Structure \textbf{3.1. Structure} 3.1. Structure

1️⃣哈希函数 g 1 g 2 . . . g L g_1g_2...g_L g1g2...gL:令 ℓ ≥ 1 \ell \geq 1 1 L ≥ 1 L \geq 1 L1为待定的整数,则

  • 由函数 h : ( r , c r , p 1 , p 2 ) -LSH h\text{:}\left(r, cr, p_1, p_2\right)\text{-LSH} h:(r,cr,p1,p2)-LSH放大到为 L L L个独立函数 → { g 1 : ( r , c r , p 1 , p 2 ) -LSH g 2 : ( r , c r , p 1 2 , p 2 2 ) -LSH          . . . . . . .  g ℓ : ( r , c r , p 1 ℓ , p 2 ℓ ) -LSH          . . . . . . .  g L : ( r , c r , p 1 L , p 2 L ) -LSH \to\begin{cases}g_1\text{:}\left(r, cr, p_1, p_2\right)\text{-LSH}\\\\g_2\text{:}\left(r, cr, p_1^2, p_2^2\right)\text{-LSH}\\\\\,\,\,\,\,\,\,\,\text{. . . . . . . }\\g_{\ell}\text{:}\left(r, cr, p_1^{\ell}, p_2^{\ell}\right)\text{-LSH}\\\\\,\,\,\,\,\,\,\,\text{. . . . . . . }\\\\g_L\text{:}\left(r, cr, p_1^L, p_2^L\right)\text{-LSH}\end{cases} g1:(r,cr,p1,p2)-LSHg2:(r,cr,p12,p22)-LSH. . . . . . . g:(r,cr,p1,p2)-LSH. . . . . . . gL:(r,cr,p1L,p2L)-LSH

2️⃣桶定义:让所有 x ∈ S x\in{}S xS通过所有哈希函数 g i g_i gi算出哈希值,所有哈希值相同的 x x x分到一个桶里

3️⃣哈希表: T i T_i Ti收集了由 g i g_i gi哈希出来的若干非空桶,一共 L L L张哈希表 T 1 , … , T L T_1, \ldots, T_L T1,,TL 构成了我们的结构

  • 空间消耗: { 内存单元:  O ( n ⋅ L ⋅ ℓ ) 对象:  O ( n ⋅ L ) → \small\begin{cases}内存单元\text{: }O(n \cdot L \cdot \ell)\\\\对象\text{: }O(n \cdot L)\end{cases}\to{} 内存单元O(nL)对象O(nL) { ℓ = log ⁡ 1 p 2 n L = n ρ → \begin{cases}\ell{}=\log_{\frac{1}{p_2}}n\\\\L=n^{\rho}\end{cases}\to{} =logp21nL=nρ空间复杂度符合 Intro \text{Intro} Intro中的定理

3.2.   Query   \textbf{3.2. Query } 3.2. Query 

1️⃣查询信息:对 q ∈ U / S q\in{U\text{/}S} qU/S执行 ( r , c ) -NN (r,c)\text{-NN} (r,c)-NN查询

2️⃣查询步骤

  1. q q q分别通过 g 1 g 2 . . . g L g_1g_2...g_L g1g2...gL哈希函数,分别被分进桶 g 1 ( q ) g 2 ( q ) . . . g L ( q ) g_1(q)g_2(q)...g_L(q) g1(q)g2(q)...gL(q)记作 b 1 b 2 . . . b L b_1b_2...b_L b1b2...bL
  2. Z = Z= Z= b 1 b 2 . . . b L b_1b_2...b_L b1b2...bL的多重集并集中任选 2 L + 1 2L+1 2L+1
    • 特殊情况:如果 ∑ i = 1 L ∣ b i ∣ ≤ 4 L + 1 \displaystyle\sum_{i=1}^L |b_i| \leq 4L+1 i=1Lbi4L+1,则 Z Z Z会包括所有桶的所有对象
  3. Z Z Z中找到距 q q q最近的对象 e e e,若 dist ( q , e ) ≤ c r \text{dist}(q, e) \leq cr dist(q,e)cr则返回 e e e

3️⃣查询时间: { 原子操作:  O ( t l s h ⋅ ℓ ⋅ L ) 计算距离:  O ( L ) → \small\begin{cases}原子操作\text{: }O\left(t_{lsh} \cdot \ell \cdot L\right)\\\\计算距离\text{: }O(L)\end{cases}\to{} 原子操作O(tlshL)计算距离O(L) { ℓ = log ⁡ 1 p 2 n L = n ρ → \begin{cases}\ell{}=\log_{\frac{1}{p_2}}n\\\\L=n^{\rho}\end{cases}\to{} =logp21nL=nρ时间复杂度符合 Intro \text{Intro} Intro中的定理

3.3.   Analysis   \textbf{3.3. Analysis } 3.3. Analysis 

0️⃣ Good \text{Good} Good的标准: x ∈ S x\in{S} xS good ⇔ dist ( q , x ) ≤ c r \text{good}\xLeftrightarrow{}\text{dist}(q, x) \leq c r good dist(q,x)cr 否则就为 Bad \text{Bad} Bad,算法至少返回一个 good \text{good} good才成功

1️⃣引理 1 :  1\text{: } 1查询能被正确回答,需要满足以下两个条件

  1. C 1 : \mathbf{C 1:} C1 e ∗ e^* e至少出现在 b 1 , … , b L b_1, \ldots, b_L b1,,bL中的一个
  2. C 2 : \mathbf{C 2:} C2 b 1 b 2 . . . b L b_1b_2...b_L b1b2...bL的多重集并集中,至少含有 2 L 2L 2L bad \text{bad} bad对象

2️⃣引理 2 2 2 C 1 \mathbf{C 1} C1不成立的概率小于 1 e \cfrac{1}{e} e1,即 Pr [ e ∗ ∉ ⋃ i = 1 L b i ] ≤ 1 e \text{Pr}\left[e^* \notin \displaystyle\bigcup\limits_{i=1}^L b_i\right]\leq{}\cfrac{1}{e} Pr[e/i=1Lbi]e1 ,其中这个 e = 2.718... e=2.718... e=2.718...

3️⃣引理 3 3 3 C 2 \mathbf{C 2} C2不成立的概率小于 1 2 \cfrac{1}{2} 21

🤕所以 C 1 \mathbf{C}1 C1 C 2 \mathbf{C}2 C2同时成立的概率至少为 1 − ( 1 e + 1 2 ) > 0.1 1-(\cfrac{1}{e}+\cfrac{1}{2})>0.1 1(e1+21)>0.1

### 局部敏感哈希LSH算法原理 局部敏感哈希(Locality-Sensitive Hashing, LSH)是一种用于处理高维数据相似性搜索的技术。其核心思想是设计一种特殊的哈希函数,使得相似的数据对象更有可能被映射到同一个“桶”中[^3]。 #### 原理概述 传统哈希函数的目标是尽可能均匀分布数据,而 LSH 的目标则是保持原始数据之间的相似关系。具体而言,如果两个数据点在原空间中的距离较小,则它们经过 LSH 映射后的哈希值有更高的概率相同;反之亦然。这种特性使 LSH 成为解决大规模近似最近邻搜索问题的有效工具[^4]。 #### 主要实现方式 根据不同的应用场景和技术需求,LSH 可以采用多种具体的实现方法: 1. **SimHash** SimHash 是一种基于随机超平面投影的 LSH 方法。它的基本思路是通过一系列随机向量将输入数据投射到低维空间,并利用汉明距离代替余弦距离来衡量相似度[^1]。这种方法特别适合处理文本或其他稀疏特征表示的任务。 2. **MinHash** MinHash 则主要应用于集合间的相似性计算,尤其是 Jaccard 相似系数的估计。它通过对集合元素进行多次独立哈希操作并记录最小值的方式降低维度,从而提高效率。 除了上述两种经典形式外,还有其他变种如基于稳定分布投影的方法以及核化版本(Kernel LSH),这些扩展进一步增强了 LSH 对不同类型数据的支持能力[^2]。 --- ### 应用领域 由于能够显著提升大数据环境下的检索速度与精度,LSH 已经广泛应用于多个实际场景之中: - **推荐系统**: 在构建个性化推荐模型时,可以通过 LSH 快速定位用户兴趣偏好相近的商品或内容; - **图像识别**: 面对海量图片库,借助该技术可迅速筛选出视觉上类似的候选集; - **自然语言处理(NLP)**: 文档去重、主题分类等领域也离不开高效的语义匹配手段支持; - **生物信息学**: DNA序列比对等问题同样受益于此类高效索引机制带来的便利条件[^5]。 ```python import numpy as np def lsh_example(data_points, hash_functions): """ A simple example of applying Locality Sensitive Hashing. :param data_points: List of high-dimensional vectors to be hashed. :param hash_functions: Predefined list of hashing functions. :return: Dictionary mapping buckets to their corresponding points. """ bucket_map = {} for point in data_points: signature = tuple([f(point) for f in hash_functions]) if signature not in bucket_map: bucket_map[signature] = [] bucket_map[signature].append(point) return bucket_map ``` 此代码片段展示了一个简化版的 LSH 实现过程,其中 `data_points` 表示待处理的数据样本集合,而 `hash_functions` 定义了一系列预先设定好的散列规则。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值