基本介绍
进制转换是计算机科学中非常基础的概念,也是初学者需要掌握的重要知识点。在日常生活中,我们最为熟悉的是10进制,也就是人类所使用的数字系统。但在计算机领域中,除了10进制,还有2进制、8进制和16进制等多种进制。
在本文中,我们将介绍这些进制的转换方法。
进制转换是人们利用符号来计数的方法。进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。基数是指,进位计数制中所采用的数码(数制中用来表示“量”的符号)的个数。位权是指,进位制中每一固定位置对应的单位值。
进制转换
进制转换表
整数部分的进制转换
10进制转2进制
10进制转2进制的方法很简单,只需要反复除以2并记录余数即可。
例如,将10进制的9转换成2进制,我们可以按照以下步骤计算:
9 ÷ 2 = 4 余 1(D)
4 ÷ 2 = 2 余 0(C)
2 ÷ 2 = 1 余 0(B)
1 ÷ 2 = 0 余 1(A)
将余数倒过来排列,即可得到2进制的表示:ABCD = 1001。
2进制转10进制
2进制转10进制的方法也很简单,只需要按照位权相加即可。
例如,将2进制的1101转换成10进制,我们可以按照以下步骤计算:
1 × 2³ = 8(A)
1 × 2² = 4(B)
0 × 2¹ = 0(C)
1 × 2⁰ = 1(D)
将各位的位权相加,即可得到10进制的表示:A+B+C+D = 13。
10进制转8进制
10进制转8进制的方法与10进制转2进制类似,只不过需要反复除以8并记录余数。例如,将10进制的73转换成8进制,我们可以按照以下步骤计算:
73 ÷ 8 = 9 余 1(C)
9 ÷ 8 = 1 余 1 (B)
1 ÷ 8 = 0 余 1 (A)
将余数倒过来排列,即可得到8进制的表示:ABC = 111。
8进制转10进制
8进制转10进制的方法也与2进制转10进制类似,只需要按照位权相加即可。
例如,将8进制的567转换成10进制,我们可以按照以下步骤计算:
5 × 8² = 320(A)
6 × 8¹ = 48 (B)
7 × 8⁰ = 7 (C)
将各位的位权相加,即可得到10进制的表示:A+B+C = 375。
10进制转16进制
10进制转16进制的方法与10进制转8进制类似,只不过需要反复除以16并记录余数。在16进制中,1015分别用AF表示。
例如,将10进制的1024转换成16进制,我们可以按照以下步骤计算:
1024 ÷ 16 = 64 余 0(C)
64 ÷ 16 = 4 余 0 (B)
4 ÷ 16 = 0 余 4 (A)
将余数倒过来排列,并将1015用AF表示,即可得到16进制的表示:ABC = 400。
16进制转10进制
16进制转10进制的方法也与2进制转10进制类似,只需要按照位权相加即可。在16进制中,AF分别代表1015。
例如,将16进制的1A5转换成10进制,我们可以按照以下步骤计算:
1 × 16² = 256(A)
A × 16¹ = 160(B)
5 × 16⁰ = 5 (C)
将各位的位权相加,即可得到10进制的表示:A+B+C = 421。
小数部分的进制转换
在进行小数部分的进制转换时,需要将小数不断乘以相应的进制数,并取整数部分进行拼接。
十进制转二进制:
将小数部分不断乘以2,取整数部分,将结果拼接起来即可。
例如,将十进制数0.375转换为二进制数的计算方法为:
0.375 × 2 = 0.75 取整数部分0 (A)
0.75 × 2 = 1.5 取整数部分1 (B)
0.5 × 2 = 1 取整数部分1 (C)
因此,0.375 的二进制数为 0.ABC = 0.011。
十进制转八进制或十六进制
将小数部分不断乘以8或16,取整数部分,将结果拼接起来即可。例如,将十进制数0.6875转换为八进制数和十六进制数的计算方法为:
0.6875 × 8 = 5.5 取整数部分5(A)
0.5 × 8 = 4 取整数部分4 (B)
因此,0.6875的八进制数为0.AB = 0.54。同样地,将0.6875乘以16得到11(十六进制为B),因此其十六进制数为0.AB = 0.B.
总结:
进制转换虽然看起来很抽象,但实际上只需要掌握一些简单的规律,就可以轻松完成转换。在实际应用中,我们经常需要将不同进制之间的数值进行转换,例如在计算机网络通信中,IP地址通常使用点分十进制表示法,而MAC地址则使用十六进制表示法。因此,掌握进制转换技巧是非常实用的一项技能。