数据结构----树

目录

一丶树

1.概念:

2.特点

3.关于树的一些基本概念

二丶二叉树

1.概念

2.性质

3.满二叉树和完全二叉树

4.二叉树的遍历

5.存储结构

5.1顺序存储

5.2链式存储

6.层次遍历

三丶哈夫曼树


一丶树

1.概念:

         树(Tree)是n(n>=0)个节点的有限集合T,它满足两个条件 :有且仅有一个特定的称为根(Root)的节点;其余的节点可以分为m(m≥0)个互不相交的有限集合T1、T2、……、Tm,其中每一个集合又是一棵树,并称为其根的子树(Subtree)。

2.特点

        一对多,每个节点最多有一个前驱,但可以有多个后继(根节点无前驱,叶节点无后继)

3.关于树的一些基本概念

(1)度数:一个节点的子树的个数(一个节点的子树的个数称为该节点的度数,3)

(2)树度数:树中节点的最大度数

(3)叶节点或终端节点: 度数为零的节点

(4)分支节点:度数不为零的节点(B一层)

(5)内部节点:除根节点以外的分支节点 (B,C,D)

(6)节点层次: 根节点的层次为1,根节点子树的根为第2层,以此类推

(7)树的深度或高度: 树中所有节点层次的最大值

二丶二叉树

1.概念

        二叉树(Binary Tree)是n(n≥0)个节点的有限集合,它或者是空集(n=0),或者是由一个根节点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成。二叉树与普通有序树不同,二叉树严格区分左孩子和右孩子即使只有一个子节点也要区分左右

2.性质

     (1)  二叉树第k(k>=1)层上的节点最多为2的k-1次幂 // 2^(k-1)

(2)  深度为k(k>=1)的二叉树最多有2的k次幂-1个节点。//满二叉树的时候最多的节点数 2^k-1

(3)  在任意一棵二叉树中,树叶的数目比度数为2的节点的数目多一。

设度数为0的节点数为n0,度数为1的节点数为n1以及度数为2的节点数为n2,则:

总节点数为各类节点之和: n = n0 + n1+ n2

总节点数为所有子节点数加一:n = n0*0 + n1*1 + n2*2 + 1

下面式子减上面式子得: 0 = -n0 + n2 +1 ==> n0 = n2 + 1

3.满二叉树和完全二叉树

          满二叉树: 深度为k(k>=1)时节点数为2^k - 1(2的k次幂-1)

         完全二叉树: 只有最下面两层有度数小于2的节点,且最下面一层的叶节点集中在最左边的若干位置上。(先挂树的左边向右, 从上向下挂)

4.二叉树的遍历

   前序: 根 ----> 左 -----> 右

   中序:  左 ----> 根 -----> 右
   后序:  左 ----> 右 -----> 根

前序: A B C D E F G H K

中序:B D C A E H G K F
后序:D C B H K G F E A

5.存储结构

5.1顺序存储

顺序存储结构 :完全二叉树节点的编号方法是从上到下,从左到右,根节点为1号节点。
    设完全二叉树的节点数为n,某节点编号为i

        当i>1(不是根节点)时,有父节点,其编号为i/2;
        当2*i<=n时,有左孩子,其编号为2*i ,否则没有左孩子,本身是叶节点;
        当2*i+1<=n时,有右孩子,其编号为2*i+1 ,否则没有右孩子;
节点编号
      根节点编号 1
      根节点左子节点编号: 2 即 2 * 1
      根节点右子节点编号: 3 即 2 * 1 + 1
第n个节点
      左子节点编号: 2 * n
      右子节点编号: 2 * n + 1

          有n个节点的完全二叉树可以用有n+1 个元素的数组进行顺序存储,节点号和数组下标一一对应,下标为零的元素不用。

5.2链式存储

当i>1(不是根节点)时,有父节点,其编号为i/2;

当2*i<=n时,有左孩子,其编号为2*i ,否则没有左孩子,本身是叶节点;
当2*i+1<=n时,有右孩子,其编号为2*i+1 ,否则没有右孩子;

#include <stdio.h>
#include <stdlib.h>
typedef struct node
{
    int data;            // 数据域
    struct node *lchild; // 左子树
    struct node *rchild; // 右子树
} node_t, *node_p;
node_p CreateBitTree(int i, int n) // i为根节点编号,n为节点数
{
    node_p p = (node_p)malloc(sizeof(node_t)); // 开辟空间
    if (NULL == p)                             // 容错判断
    {
        printf("Create err");
        return NULL;
    }
    p->data = i;                             // 初始化数据域
    if (2 * i <= n)                          // 判断有无左子树
        p->lchild = CreateBitTree(2 * i, n); // 利用递归函数创建树
    else
        p->lchild = NULL;
    if (2 * i + 1 <= n) // 判断有无右子树
        p->rchild = CreateBitTree(2 * i + 1, n);
    else
        p->rchild = NULL;
}
int Perorder(node_p p)//前序遍历
{
    if (NULL == p)
        return 0;
    printf("%d ", p->data);
    if (NULL != p->lchild)
        Perorder(p->lchild);
    if (NULL != p->rchild)
        Perorder(p->rchild);
}
int Midorder(node_p p)//中序遍历
{
    if (NULL == p)
        return 0;
    if (NULL != p->lchild)
        Midorder(p->lchild);
    printf("%d ", p->data);
    if (NULL != p->rchild)
        Midorder(p->rchild);
}
int Rearorder(node_p p)//后序遍历
{
    if (NULL == p)
        return 0;
    if (NULL != p->lchild)
        Rearorder(p->lchild);
    if (NULL != p->rchild)
        Rearorder(p->rchild);
    printf("%d ", p->data);
}
int Release(node_p p)//释放树
{
    if (NULL == p)
        return 0;
    if (p->lchild != NULL)
        Release(p->lchild);
    if (p->rchild != NULL)
        Release(p->rchild);
    free(p);
    p = NULL;
}
int main(int argc, char const *argv[])
{
    node_p p = CreateBitTree(1, 5);
    printf("前序遍历\n");
    Perorder(p);
    printf("中序遍历\n");
    Midorder(p);
    printf("后序遍历\n");
    Rearorder(p);
    printf("\n");
    return 0;
}

6.层次遍历

三丶哈夫曼树

哈夫曼树又称为最优树.

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

先明确以下概念:

1、路径和路径长度

          在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

2、结点的权及带权路径长度

            若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。

3、树的带权路径长度

        树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。(

Weighted Path Length of Tree)

WPL=2*2+5*2+7*1=21

哈夫曼树的构造:

        假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:

           (1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);

          (2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;

         (3)从森林中删除选取的两棵树,并将新树加入森林;

         (4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

例如:对 2,3,4,8 这四个数进行构造:

第一步:

第二步:

第三步:

  • 15
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值