[CCF-CSP]2023-12-1仓库规划
问题描述
西西艾弗岛上共有 n 个仓库,依次编号为 1⋯n。每个仓库均有一个 m 维向量的位置编码,用来表示仓库间的物流运转关系。
具体来说,每个仓库i均可能有一个上级仓库 j,满足:仓库j位置编码的每一维均大于仓库 i 位置编码的对应元素。比如编码为 (1,1,1) 的仓库可以成为 (0,0,0) 的上级,但不能成为 (0,1,0) 的上级。如果有多个仓库均满足该要求,则选取其中编号最小的仓库作为仓库 i 的上级仓库;如果没有仓库满足条件,则说明仓库 i 是一个物流中心,没有上级仓库。
现给定 n 个仓库的位置编码,试计算每个仓库的上级仓库编号。
输入格式
从标准输入读入数据。
输入共 n+1 行。
输入的第一行包含两个正整数 n 和 m,分别表示仓库个数和位置编码的维数。
接下来 n 行依次输入 n 个仓库的位置编码。其中第 i 行(1≤ i≤ n)包含 m 个整数,表示仓库 i 的位置编码。
输出格式
输出到标准输出。
输出共 n 行。
第 i 行(1≤ i ≤ n)输出一个整数,表示仓库 i 的上级仓库编号;如果仓库 i 没有上级,则第 i 行输出 0。
样例输入
4 2
0 0
-1 -1
1 2
0 -1
样例输出
3
1
0
3
样例输出
3
1
0
3
样例解释
对于仓库 2:(−1,−1) 来说,仓库 1:(0,0) 和仓库 3:(1,2) 均满足上级仓库的编码要求,因此选择编号较小的仓库 1 作为其上级。
子任务
50% 的测试数据满足 m=2;
全部的测试数据满足 0<m≤10、0<n≤1000,且位置编码中的所有元素均为绝对值不大于 106 的整数。
思路
定义一个二维数组,逐行比较,注意跳出条件。
#include<iostream>
int c[1001][11];
using namespace std;
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>c[i][j];
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int ans=0;
for(int k=1;k<=m;k++){
if(c[j][k]>c[i][k]){//比较
ans++;
}
}
if(ans==m){
cout<<j<<endl;
break;
}
if(j==n){
cout<<0<<endl;
}
}
}
}