1911. 最大子序列交替和
一个下标从 0 开始的数组的 交替和 定义为 偶数 下标处元素之 和 减去 奇数 下标处元素之 和 。
比方说,数组 [4,2,5,3] 的交替和为 (4 + 5) - (2 + 3) = 4 。
给你一个数组 nums ,请你返回 nums 中任意子序列的 最大交替和 (子序列的下标 重新 从 0 开始编号)。
一个数组的 子序列 是从原数组中删除一些元素后(也可能一个也不删除)剩余元素不改变顺序组成的数组。比方说,[2,7,4] 是 [4,2,3,7,2,1,4] 的一个子序列(加粗元素),但是 [2,4,2] 不是。
示例 1:
输入:nums = [4,2,5,3]
输出:7
解释:最优子序列为 [4,2,5] ,交替和为 (4 + 5) - 2 = 7 。
示例 2:
输入:nums = [5,6,7,8]
输出:8
解释:最优子序列为 [8] ,交替和为 8 。
示例 3:
输入:nums = [6,2,1,2,4,5]
输出:10
解释:最优子序列为 [6,1,5] ,交替和为 (6 + 5) - 1 = 10 。
思路 我们定义了两个变量
1 evenSum: 记录当前两个偶数和与奇数的最大差值
2 oddSum :记录两个数较大的差值
class Solution {
public:
long long maxAlternatingSum(vector<int>& nums) {
long long evenSum = nums[0], oddSum = 0;
for(int i=1;i<nums.size();i++)
{
evenSum=max(evenSum,oddSum+nums[i]);
oddSum =max(oddSum,evenSum-nums[i]);
}
return evenSum;
}
};