设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为nxn−1。)
思路是利用结构体数组,分别存储系数和指数,然后利用求导公式,难点是如果是有 0的情况一定要输出 0 0 不然就会wa
输入格式:
以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过 1000 的整数)。数字间以空格分隔。
输出格式:
以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是 0,但是表示为 0 0
。
输入样例:
3 4 -5 2 6 1 -2 0
输出样例:
12 3 -10 1 6 0
#include<iostream>
using namespace std;
struct eFunction
{
int xi;
int zhi;
};
int main()
{
eFunction s[2001];
int i = 0;
while ((scanf("%d %d", &s[i].xi, &s[i].zhi)) != EOF) {
i++;
}
if(s[0].xi==0||s[0].zhi==0)
{
cout<<"0 0";
return 0;
}
int flag = 1;
for (int j = 0; j < i; ++j) {
if (flag == 1) {
if (s[j].zhi != 0&&s[j].xi!=0) {
cout << s[j].zhi * s[j].xi << " " << s[j].zhi - 1;
flag = 0;
}
}
else {
if (s[j].zhi != 0&&s[j].xi!=0)
cout << " " << s[j].zhi * s[j].xi << " " << s[j].zhi - 1;
}
}
}