使用anconda进行YOLOV5-lite的模型训练

使用anconda进行YOLOv5-lite的环境搭建和模型训练:

Anaconda安装下载:

若是在本地的环境上进行搭建yolo5的训练环境,会使本地环境变的紊乱,有可能导致电脑崩坏。所以需要使用anconda进行一个虚拟环境的搭建。使用21年5月份的anconda进行环境搭建。

【精选】利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn(适合小白的保姆级教学)_炮哥带你学的博客-CSDN博客

这个博主的方法进行环境搭建。

注意,进行环境的创建时,每个版本都有对应相匹配的版本,不要安装到错误的版本。

建议使用python3.8

Pytorch的环境搭建

若使用我搭建的虚拟环境,将pytorch文件放入anconda的envs文件中即可找到我搭建的虚拟环境。

注意,cuda的版本建议使用11.1版本的。其他版本还没尝试过。

进入虚拟环境后:下载pytorch环境相关的依赖:conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

下载好后。

Yolo5训练依赖下载

进入yolov5的文件,找到requirements.txt 后,一键下载pip install -r requirements.txt,安装好yolov5训练所需要的环境。

可以使用pycharm进行环境的搭建,使用时需要一定的熟练度,不然会导致环境安装失败。影响后续的训练。

之后根据博主的文档,进行数据集的编写还有测试即可

Labelimg标注图片使用voc格式,方便分测试和训练集。

在虚拟环境下pip install labelimg -i Simple Index进行下载标注器。

配置好voc文件(自建)

打开labelimg JPEGImages predefined_classes.txt进行标注。配置如下

W标注,D键下一张,自动保存。

标注完后,进行(voc转yolo,分训练集和测试集)

在VOC的文件下建立py文件输入代码,修改自己的标签

需要要修改classes = [......],中的标签名

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile

classes = ["Dianchi","Yaopian","Yaohe"]
# classes=["ball"]

TRAIN_RATIO = 80


def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id)
    out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
    os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
    os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
    os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
    os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
    os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
    os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
    os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
    os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
    os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)

train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir)  # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0, len(list_imgs)):
    path = os.path.join(image_dir, list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    if (prob < TRAIN_RATIO):  # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else:  # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()

将测试集和训练集分开。在VOC文件中可以看到。

模型的训练

修改data的voc文件还有models的yolov5s,自己复制一份进行修改。

修改的内容

Nc是标签的个数,name填标签的名字。

然后修改train.Py文件

接下来就可以进行训练了

训练完后,会在该目录下找到runs文件,最后模型为pt文件。

将pt模型文件转换为onnx文件

openCv需要onnx文件,故将pt文件转换成onnx文件,在该目录的export.py是转换的代码,将pt文件搬到该目录下,运行即可。

在虚拟环境下

下载 pip install onnx  和 onnx -simplifier

训练完后再runs里面可以找到权重文件,Best.pt。

因为opencv检测的是onnx文件,所以需要转换pt文件,在yolo目录下中的models文件里面,有export.py的代码,将 – weights的这一行改成这样。

然后在,yolo的目录下放置best.pt文件。运行export.py

python .\models\export.py 必须在yolo的文件目录下,运行,不能在models,要不然会导致import models 找不到。注意一点,如果报 git tag的错误,如

大部分是因为 找不到best.pt文件。

运行无误则随后在yolo目录下就可以找到onnx文件。

会生成onnx和额外的文件,其大小是best.pt的两倍。

树莓派上:

使用我提供的树莓派,可以使操作更加简便。

下载安装好opencv,新版本也可以。

可以使用pip3 install opencv-python进行安装

Python的版本最好是3.8以上

该镜像的,一般运行py文件使用的是python3 . ….py文件的格式

因为在树莓派上跑模型,需要加速推理,我们所使用的为onnxruntime的加速,所以需要下载onnxruntime,在树莓派上,输入pip install onnxruntime即可。若是找不到安装包,在我推荐的博主里面,换源下载。多换几个肯定能。

在我提供的模型代码yolo_test.py中,需要改文件名字和标签名称,其中包含了发送数据给串口的部分,需要修改即可。

将yolo_test.py与模型best.onnx放在同一文件夹下,使用python3 yolo_test.py运行即可,摄像头的部分我采用的usb摄像头,咋使用usb摄像头可以借鉴其他博主的文章。Q关闭程序,S开始停止程序。

内含虚拟环境和镜像以及yolov5-lite文件。

链接:https://pan.baidu.com/s/1jXdLKOfXa5BEMwOrF5IAyg 
提取码:xd4d 
 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华年玩嵌入

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值