使用anconda进行YOLOv5-lite的环境搭建和模型训练:
Anaconda安装下载:
若是在本地的环境上进行搭建yolo5的训练环境,会使本地环境变的紊乱,有可能导致电脑崩坏。所以需要使用anconda进行一个虚拟环境的搭建。使用21年5月份的anconda进行环境搭建。
【精选】利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn(适合小白的保姆级教学)_炮哥带你学的博客-CSDN博客
这个博主的方法进行环境搭建。
注意,进行环境的创建时,每个版本都有对应相匹配的版本,不要安装到错误的版本。
建议使用python3.8
Pytorch的环境搭建
若使用我搭建的虚拟环境,将pytorch文件放入anconda的envs文件中即可找到我搭建的虚拟环境。
注意,cuda的版本建议使用11.1版本的。其他版本还没尝试过。
进入虚拟环境后:下载pytorch环境相关的依赖:conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
下载好后。
Yolo5训练依赖下载
进入yolov5的文件,找到requirements.txt 后,一键下载pip install -r requirements.txt,安装好yolov5训练所需要的环境。
可以使用pycharm进行环境的搭建,使用时需要一定的熟练度,不然会导致环境安装失败。影响后续的训练。
之后根据博主的文档,进行数据集的编写还有测试即可
Labelimg标注图片使用voc格式,方便分测试和训练集。
在虚拟环境下pip install labelimg -i Simple Index进行下载标注器。
配置好voc文件(自建)
打开labelimg JPEGImages predefined_classes.txt进行标注。配置如下
W标注,D键下一张,自动保存。
标注完后,进行(voc转yolo,分训练集和测试集)
在VOC的文件下建立py文件输入代码,修改自己的标签
需要要修改classes = [......],中的标签名
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
classes = ["Dianchi","Yaopian","Yaohe"]
# classes=["ball"]
TRAIN_RATIO = 80
def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith("._"):
os.remove(abspath)
else:
clear_hidden_files(abspath)
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id)
out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()
wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0, len(list_imgs)):
path = os.path.join(image_dir, list_imgs[i])
if os.path.isfile(path):
image_path = image_dir + list_imgs[i]
voc_path = list_imgs[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + '.xml'
annotation_path = os.path.join(annotation_dir, annotation_name)
label_name = nameWithoutExtention + '.txt'
label_path = os.path.join(yolo_labels_dir, label_name)
prob = random.randint(1, 100)
print("Probability: %d" % prob)
if (prob < TRAIN_RATIO): # train dataset
if os.path.exists(annotation_path):
train_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_train_dir + voc_path)
copyfile(label_path, yolov5_labels_train_dir + label_name)
else: # test dataset
if os.path.exists(annotation_path):
test_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_test_dir + voc_path)
copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()
将测试集和训练集分开。在VOC文件中可以看到。
模型的训练
修改data的voc文件还有models的yolov5s,自己复制一份进行修改。
修改的内容
Nc是标签的个数,name填标签的名字。
然后修改train.Py文件
接下来就可以进行训练了
训练完后,会在该目录下找到runs文件,最后模型为pt文件。
将pt模型文件转换为onnx文件
openCv需要onnx文件,故将pt文件转换成onnx文件,在该目录的export.py是转换的代码,将pt文件搬到该目录下,运行即可。
在虚拟环境下
下载 pip install onnx 和 onnx -simplifier
训练完后再runs里面可以找到权重文件,Best.pt。
因为opencv检测的是onnx文件,所以需要转换pt文件,在yolo目录下中的models文件里面,有export.py的代码,将 – weights的这一行改成这样。
然后在,yolo的目录下放置best.pt文件。运行export.py
python .\models\export.py 必须在yolo的文件目录下,运行,不能在models,要不然会导致import models 找不到。注意一点,如果报 git tag的错误,如
大部分是因为 找不到best.pt文件。
运行无误则随后在yolo目录下就可以找到onnx文件。
会生成onnx和额外的文件,其大小是best.pt的两倍。
树莓派上:
使用我提供的树莓派,可以使操作更加简便。
下载安装好opencv,新版本也可以。
可以使用pip3 install opencv-python进行安装
Python的版本最好是3.8以上
该镜像的,一般运行py文件使用的是python3 . ….py文件的格式
因为在树莓派上跑模型,需要加速推理,我们所使用的为onnxruntime的加速,所以需要下载onnxruntime,在树莓派上,输入pip install onnxruntime即可。若是找不到安装包,在我推荐的博主里面,换源下载。多换几个肯定能。
在我提供的模型代码yolo_test.py中,需要改文件名字和标签名称,其中包含了发送数据给串口的部分,需要修改即可。
将yolo_test.py与模型best.onnx放在同一文件夹下,使用python3 yolo_test.py运行即可,摄像头的部分我采用的usb摄像头,咋使用usb摄像头可以借鉴其他博主的文章。Q关闭程序,S开始停止程序。
内含虚拟环境和镜像以及yolov5-lite文件。
链接:https://pan.baidu.com/s/1jXdLKOfXa5BEMwOrF5IAyg
提取码:xd4d